AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuning the near room temperature oxidation behavior of high-entropy alloy nanoparticles

Jing Gao1Jun Ding2( )Yin Zhang3Ting Zhu3Qian Yu1( )
Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Show Author Information

Graphical Abstract

Changing the alloying elements by replacing Mn with Pd resulted in different oxidation processes and products, which were revealed by in situ oxidation experiments of CrMnFeCoNi and CrFeCoNiPd high-entropy alloy nanoparticles.

Abstract

Understanding the oxidation behavior of high-entropy alloys (HEAs) is essential to their practical applications. Here we conducted in situ environmental transmission electron microscopy (E-TEM) observations of dynamic oxidation processes in CrMnFeCoNi and CrFeCoNiPd nanoparticles (NPs) near room temperature. During the oxidation of CrMnFeCoNi NPs, a favorable oxidation product was MnCr2O4 with the spinel structure. The surface nanoislands of MnCr2O4 underwent dynamic reconstruction, resulting in the thickened oxide layer with less crystallinity. In CrFeCoNiPd NPs, the reactive element Mn was replaced by the inert element Pd. As a result, a favorable oxide product was CrO2 with the rutile structure. CrO2 formed on the NP surface and was a result of Cr outward diffusion through the oxide layer. In addition, FeO nanocrystals formed at the oxide/metal interface and were a result of O inward diffusion through the oxide layer. We also performed first principles calculations to provide insights into the energetics and diffusion rates related to oxide formation. These results reveal the non-equilibrium processes of oxidation in HEA NPs that can be strongly influenced by small particle sizes and large surface areas. This work underscores the high tunability of oxidation behavior in nanoscale HEAs by changing their constituent alloying elements.

Electronic Supplementary Material

Video
12274_3900_ESM1.avi
12274_3900_ESM2.avi
12274_3900_ESM3.avi
Download File(s)
12274_2021_3900_MOESM1_ESM.pdf (575.7 KB)

References

1

Abdulagatov, A. I.; Yan, Y.; Cooper, J. R.; Zhang, Y.; Gibbs, Z. M.; Cavanagh, A. S.; Yang, R. G.; Lee, Y. C.; George, S. M. Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. ACS Appl. Mater. Interfaces 2011, 3, 4593–4601.

2

Esmaily, M.; Svensson, J. E.; Fajardo, S.; Birbilis, N.; Frankel, G. S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L. G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193.

3

Gao, J.; Yan, J. Y.; Zhao, B. K.; Zhang, Z.; Yu, Q. In situ observation of temperature-dependent atomistic and mesoscale oxidation mechanisms of aluminum nanoparticles. Nano Res. 2020, 13, 183–187.

4

Cui, Y. J.; Aoyagi, K.; Koizumi, Y.; Fujieda, T.; Chiba, A. Enhanced oxidation resistance of a titanium-based alloy by the addition of boron and the application of electron beam melting. Addit. Manuf. 2020, 31, 100971.

5

Luo, L. L.; Kang, Y. H.; Yang, J. C.; Su, D.; Stach, E. A.; Zhou, G. W. Comparative study of the alloying effect on the initial oxidation of Cu-Au(100) and Cu-Pt(100). Appl. Phys. Lett. 2014, 104, 121601.

6

de Freitas Cunha Lins, V.; Madeira, L.; Vilela, J. M. C.; Andrade, M. S.; Buono, V. T. L.; Guimaraes, J. P. de Azevedo Alvarenga, E. Selective oxidation of dual phase steel after annealing at different dew points. Appl. Surf. Sci. 2011, 257, 5871–5878.

7

George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

8

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

9

Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

10

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

11

Shi, Y. Z.; Yang, B.; Liaw, P. K. Corrosion-resistant high-entropy alloys: A review. Metals 2017, 7, 43.

12

Wang, R.; Chen, W. M.; Zhong, J.; Zhang, L. J. Experimental and numerical studies on the sluggish diffusion in face centered cubic Co-Cr-Cu-Fe-Ni high-entropy alloys. J. Mater. Sci. Technol. 2018, 34, 1791–1798.

13

Tsai, K. Y.; Tsai, M. H.; Yeh, J. W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897.

14

Ding, Q. Q.; Zhang, Y.; Chen, X.; Fu, X. Q.; Chen, D. K.; Chen, S. J.; Gu, L.; Wei, F.; Bei, H. B.; Gao, Y. F. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019, 574, 223–227.

15

Laplanche, G.; Volkert, U. F.; Eggeler, G.; George, E. P. Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid. Met. 2016, 85, 629–645.

16

Li, Y. J.; Kostka, A.; Savan, A.; Ludwig, A. Atomic-scale investigation of fast oxidation kinetics of nanocrystalline CrMnFeCoNi thin films. J. Alloys Compd. 2018, 766, 1080–1085.

17

Holcomb, G. R.; Tylczak, J.; Carney, C. Oxidation of CoCrFeMnNi high entropy alloys. JOM 2015, 67, 2326–2339.

18

Shi, H.; Tang, C. C.; Jianu, A.; Fetzer, R.; Weisenburger, A.; Steinbrueck, M.; Grosse, M.; Stieglitz, R.; Müller, G. Oxidation behavior and microstructure evolution of alumina-forming austenitic & high entropy alloys in steam environment at 1200 ℃. Corros. Sci. 2020, 170, 108654.

19

Liu, C. M.; Wang, H. M.; Zhang, S. Q.; Tang, H. B.; Zhang, A. L. Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys Compd. 2014, 583, 162–169.

20

Song, B. A.; Yang, Y.; Rabbani, M.; Yang, T. T.; He, K.; Hu, X. B.; Yuan, Y. F.; Ghildiyal, P.; Dravid V. P.; Zachariah, M. R. et al. In situ oxidation studies of high-entropy alloy nanoparticles. ACS Nano 2020, 14, 15131–15143.

21

Gao, S. J.; Hao, S. Y.; Huang, Z. N.; Yuan, Y. F.; Han, S.; Lei, L. C.; Zhang, X. W.; Shahbazian-Yassar, R.; Lu, J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 2020, 11, 2016.

22

Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non-Cryst. Solids 1995, 192−193, 222–229.

23

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

24

Zunger, A.; Wei, S. H.; Ferreira, L. G.; Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 1990, 65, 353–356.

25

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

26

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

27

Jain, A.; Hautier, G.; Ong, S. P.; Moore, C. J.; Fischer, C. C.; Persson, K. A.; Ceder, G. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 2011, 84, 045115.

28

Huang, S.; Holmström, E.; Eriksson, O.; Vitos, L. Mapping the magnetic transition temperatures for medium- and high-entropy alloys. Intermetallics 2018, 95, 80–84.

29

Aqra, F.; Ayyad, A. Surface free energy of alkali and transition metal nanoparticles. Appl. Surf. Sci. 2014, 314, 308–313.

30

Li, H.; Chen, W. X. Stability of MnCr2O4 spinel and Cr2O3 in high temperature carbonaceous environments with varied oxygen partial pressures. Corros. Sci. 2010, 52, 2481–2488.

31

Kar, A.; Patra, A. Impacts of core-shell structures on properties of lanthanide-based nanocrystals: Crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale 2012, 4, 3608–3619.

32

Lucas, M. S.; Mauger, L.; Muñoz, J. A.; Xiao, Y. M.; Sheets, A. O.; Semiatin, S. L.; Horwath, J.; Turgut, Z. Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 2011, 109, 07E307.

33

Kim, Y. K.; Joo, Y. A.; Kim, H. S.; Lee, K. A. High temperature oxidation behavior of Cr-Mn-Fe-Co-Ni high entropy alloy. Intermetallics 2018, 98, 45–53.

34

Kai, W.; Li, C. C.; Cheng, F. P.; Chu, K. P.; Huang, R. T.; Tsay, L. W.; Kai, J. J. Air-oxidation of feconicr-based quinary high-entropy alloys at 700−900 ℃. Corros. Sci. 2017, 121, 116–125.

35

Cabrera, N.; Mott, N. F. Theory of the oxidation of metals. Rep. Prog. Phys. 1949, 12, 163–184.

36

Zhao, S. J.; Osetsky, Y.; Zhang, Y. W. Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr. Acta Mater. 2017, 128, 391–399.

37

Janotti, A.; Krčmar, M.; Fu, C. L.; Reed, R. C. Solute diffusion in metals: Larger atoms can move faster. Phys. Rev. Lett. 2004, 92, 085901.

Nano Research
Pages 3569-3574
Cite this article:
Gao J, Ding J, Zhang Y, et al. Tuning the near room temperature oxidation behavior of high-entropy alloy nanoparticles. Nano Research, 2022, 15(4): 3569-3574. https://doi.org/10.1007/s12274-021-3900-3
Topics:

881

Views

8

Crossref

6

Web of Science

7

Scopus

1

CSCD

Altmetrics

Received: 16 April 2021
Revised: 09 September 2021
Accepted: 22 September 2021
Published: 04 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return