Journal Home > Volume 15 , Issue 4

Brain-inspired neuromorphic computing can overcome the energy and throughput limitations of traditional von Neumann-type computing systems, which requires analog updates of their artificial synaptic strengths for the best recognition performance and low energy consumption. Here, we report synaptic devices made from highly insulating ferroelectric LiNbO3 (LNO) thin films bonded to SiO2/Si wafers. Through the creation/annihilation of periodically arrayed antiparallel domains within LNO nanocells, which are stimulated using positive/negative voltage pulses (synaptic plasticity), we can modulate the synaptic conductance linearly by controlling the number of the conducting domain walls. The multilevel conductance is nonvolatile and reproducible with negligible dispersion over 100 switching cycles, representing much better performance than that of random defect-based nonlinear memristors, which generally exhibit large-scale resistance dispersion. The simulation of a neuromorphic network using these LNO artificial synapses achieves 95.6% recognition accuracy for faces, thus approaching the theoretical yield of ideal neuromorphic computing devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Analog ferroelectric domain-wall memories and synaptic devices integrated with Si substrates

Show Author's information Chao Wang§Tianyu Wang§Wendi ZhangJun Jiang( )Lin Chen( )Anquan Jiang( )
State Key Laboratory of ASIC & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China

§ Chao Wang and Tianyu Wang contributed equally to this work.

Abstract

Brain-inspired neuromorphic computing can overcome the energy and throughput limitations of traditional von Neumann-type computing systems, which requires analog updates of their artificial synaptic strengths for the best recognition performance and low energy consumption. Here, we report synaptic devices made from highly insulating ferroelectric LiNbO3 (LNO) thin films bonded to SiO2/Si wafers. Through the creation/annihilation of periodically arrayed antiparallel domains within LNO nanocells, which are stimulated using positive/negative voltage pulses (synaptic plasticity), we can modulate the synaptic conductance linearly by controlling the number of the conducting domain walls. The multilevel conductance is nonvolatile and reproducible with negligible dispersion over 100 switching cycles, representing much better performance than that of random defect-based nonlinear memristors, which generally exhibit large-scale resistance dispersion. The simulation of a neuromorphic network using these LNO artificial synapses achieves 95.6% recognition accuracy for faces, thus approaching the theoretical yield of ideal neuromorphic computing devices.

Keywords: synaptic plasticity, memristor, domain wall, recognition, LiNbO3(LNO)

References(60)

1

Hu, M.; Li, H.; Chen, Y. R.; Wu, Q.; Rose, G. S.; Linderman, R. W. Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1864–1878.

2

Shi, Y. Y.; Liang, X. H.; Yuan, B.; Chen, V.; Li, H. T.; Hui, F.; Yu, Z. C. W.; Yuan, F.; Pop, E.; Wong, H. S. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458–465.

3

Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404–410.

4

Abbott, L. F.; Nelson, S. B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 2000, 3, 1178–1183.

5

Zamarreño-Ramos, C.; Camuñas-Mesa, L. A.; Pérez-Carrasco, J. A.; Masquelier, T.; Serrano-Gotarredona, T.; Linares-Barranco, B. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 2011, 5, 26.

6

Markram, H.; Lübke, J.; Frotscher, M.; Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 1997, 275, 213–215.

7

Diederich, N.; Bartsch, T.; Kohlstedt, H.; Ziegler, M. A Memristive plasticity model of voltage-based STDP suitable for recurrent bidirectional neural networks in the hippocampus. Sci. Rep. 2018, 8, 9367.

8

Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

9

van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Talin, A. A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 2017, 16, 414–418.

10

Esqueda, I. S.; Yan, X. D.; Rutherglen, C.; Kane, A.; Cain, T.; Marsh, P.; Liu, Q. Z.; Galatsis, K.; Wang, H.; Zhou, C. W. Aligned carbon nanotube synaptic transistors for large-scale neuromorphic computing. ACS Nano 2018, 12, 7352–7361.

11

Sharbati, M. T.; Du, Y. H.; Torres, J.; Ardolino, N. D.; Yun, M.; Xiong, F. Low-power, electrochemically tunable graphene synapses for neuromorphic computing. Adv. Mater. 2018, 30, 1802353.

12

Seo, S. Y.; Park, J.; Park, J.; Song, K.; Cha, S.; Sim, S.; Choi, S. Y.; Yeom, H. W.; Choi, H.; Jo, M. H. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 2018, 1, 512–517.

13
Yu, S. M.; Chen, P. Y.; Cao, Y.; Xia, L. X.; Wang, Y.; Wu, H. Q. Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect. In Proceedings of 2015, IEEE International Electron Devices Meeting (IEDM), Washington, USA, 2015, pp 17.3. 1–17.3. 4.https://doi.org/10.1109/IEDM.2015.7409718
DOI
14

Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2013, 8, 13–24.

15

Zhao, D.; Lenz, T.; Gelinck, G. H.; Groen, P.; Damjanovic, D.; de Leeuw, D. M.; Katsouras, I. Depolarization of multidomain ferroelectric materials. Nat. Commun. 2019, 10, 2547.

16

Woo, J.; Moon, K.; Song, J.; Lee, S.; Kwak, M.; Park, J.; Hwang, H. Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems. IEEE Electron Device Lett. 2016, 37, 994–997.

17

John, R. A.; Liu, F. C.; Chien, N. A.; Kulkarni, M. R.; Zhu, C.; Fu, Q. D.; Basu, A.; Liu, Z.; Mathews, N. Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: Coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 2018, 30, 1800220.

18

Jerry, M.; Dutta, S.; Kazemi, A.; Ni, K.; Zhang, J. C.; Chen, P. Y.; Sharma, P.; Yu, S. M.; Hu, X. S.; Niemier, M. et al. A ferroelectric field effect transistor based synaptic weight cell. J. Phys. D:Appl. Phys. 2018, 51, 434001.

19

Luo, Z. D.; Xia, X.; Yang, M. M.; Wilson, N. R.; Gruverman, A.; Alexe, M. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 2020, 14, 746–754.

20

Wu, G. J.; Tian, B. B.; Liu, L.; Lv, W.; Wu, S.; Wang, X. D.; Chen, Y.; Li, J. Y.; Wang, Z.; Wu, S. Q. et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 2020, 3, 43–50.

21

McConville, J. P. V.; Lu, H. D.; Wang, B.; Tan, Y. Z.; Cochard, C.; Conroy, M.; Moore, K.; Harvey, A.; Bangert, U.; Chen, L. Q. et al. Ferroelectric domain wall memristor. Adv. Funct. Mater. 2020, 30, 2000109.

22

Chaudhary, P.; Lu, H.; Lipatov, A.; Ahmadi, Z.; McConville, J. P. V.; Sokolov, A.; Shield, J. E.; Sinitskii, A.; Gregg, J. M.; Gruverman, A. Low-voltage domain-wall LiNbO3 memristors. Nano Lett. 2020, 20, 5873–5878.

23

Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29.

24

Jiang, A. Q.; Geng, W. P.; Lv, P.; Hong, J. W.; Jiang, J.; Wang, C.; Chai, X. J.; Lian, J. W.; Zhang, Y.; Huang, R. et al. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nat. Mater. 2020, 19, 1188–1194.

25

Lubk, A.; Rossell, M. D.; Seidel, J.; He, Q.; Yang, S. Y.; Chu, Y. H.; Ramesh, R.; Hÿtch, M. J.; Snoeck, E. Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy. Phys. Rev. Lett. 2012, 109, 047601.

26

Schröder, M.; Haußmann, A.; Thiessen, A.; Soergel, E.; Woike, T.; Eng, L. M. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 2012, 22, 3936–3944.

27

Kalinin, S. V.; Borisevich, A.; Fong, D. Beyond condensed matter physics on the nanoscale: The role of ionic and electrochemical phenomena in the physical functionalities of oxide materials. ACS Nano 2012, 6, 10423–10437.

28
Shimojo, Y.; Konno, A.; Nishimura, J.; Okada, T.; Yamada, Y.; Kitazaki, S.; Furuhashi, H.; Yamazaki, S.; Yahashi, K.; Tomioka, K. et al. High-density and high-speed 128Mb chain FeRAMTM with SDRAM-compatible DDR2 interface. In Proceedings of 2009 Symposium on VLSI Technology, Kyoto, Japan, 2009, pp 218–219.
29

Pandya, S.; Wilbur, J.; Kim, J.; Gao, R.; Dasgupta, A.; Dames, C.; Martin, L. W. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 2018, 17, 432–438.

30

Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104.

31

Lu, H.; Bark, C. W.; de los Ojos, D. E.; Alcala, J.; Eom, C. B.; Catalan, G.; Gruverman, A. Mechanical writing of ferroelectric polarization. Science 2012, 336, 59–61.

32

Oh, S.; Kim, T.; Kwak, M.; Song, J.; Woo, J.; Jeon, S.; Yoo, I. K.; Hwang, H. HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications. IEEE Electron Device Lett. 2017, 38, 732–735.

33
Kaneko, Y. ZnO/Pb(Zr, Ti)O3 gate structure ferroelectric FETs. In Ferroelectric-Gate Field Effect Transistor Memories: Device Physics and Applications; Park, B. E.; Ishiwara, H.; Okuyama, M.; Sakai, S.; Yoon, S. M., Eds.; Springer: Singapore, 2016; pp 89–109.https://doi.org/10.1007/978-94-024-0841-6_5
DOI
34

Wang, C.; Jiang, J.; Chai, X. J.; Lian, J. W.; Hu, X. B.; Jiang, A. Q. Energy-efficient ferroelectric domain wall memory with controlled domain switching dynamics. ACS Appl. Mater. Interfaces 2020, 12, 44998–45004.

35

Nishitani, Y.; Kaneko, Y.; Ueda, M.; Morie, T.; Fujii, E. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J. Appl. Phys. 2012, 111, 124108.

36

Lee, G. G.; Tokumitsu, E.; Yoon, S. M.; Fujisaki, Y.; Yoon, J. W.; Ishiwara, H. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly (vinylidene fluoride-trifluoroethylene). Appl. Phys. Lett. 2011, 99, 012901.

37

Ishiwara, H. Proposal of adaptive-learning neuron circuits with ferroelectric analog-memory weights. Jpn. J. Appl. Phys. 1993, 32, 442–446.

38

Kim, M. K.; Lee, J. S. Ferroelectric analog synaptic transistors. Nano Lett. 2019, 19, 2044–2050.

39

Han, H. P.; Cai, L. T.; Xiang, B. X.; Jiang, Y. P.; Hu, H. Lithium-rich vapor transport equilibration in single-crystal lithium niobate thin film at low temperature. Opt. Mater. Express 2015, 5, 2634–2641.

40

Molotskii, M.; Agronin, A.; Urenski, P.; Shvebelman, M.; Rosenman, G.; Rosenwaks, Y. Ferroelectric domain breakdown. Phys. Rev. Lett. 2003, 90, 107601.

41

Jiang, A. Q.; Lee, H. J.; Hwang, C. S.; Scott, J. F. Sub-picosecond processes of ferroelectric domain switching from field and temperature experiments. Adv. Funct. Mater. 2012, 22, 192–199.

42

Sharma, P.; McQuaid, R. G. P.; McGilly, L. J.; Gregg, J. M.; Gruverman, A. Nanoscale dynamics of superdomain boundaries in single-crystal BaTiO3 lamellae. Adv. Mater. 2013, 25, 1323–1330.

43

Merz, W. J. Domain formation and domain wall motions in ferroelectric BaTi O3 single crystals. Phys. Rev. 1954, 95, 690–698.

44

Tybell, T.; Paruch, P.; Giamarchi, T.; Triscone, J. M. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 2002, 89, 097601.

45

Mankowsky, R.; von Hoegen, A.; Först, M.; Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 2017, 118, 197601.

46

Grigoriev, A.; Do, D. H.; Kim, D. M.; Eom, C. B.; Adams, B.; Dufresne, E. M.; Evans, P. G. Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O3 thin films. Phys. Rev. Lett. 2006, 96, 187601.

47

Shin, Y. H.; Grinberg, I.; Chen, I. W.; Rappe, A. M. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 2007, 449, 881–884.

48

Wang, T. Y.; Meng, J. L.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments. Nanoscale Horiz. 2019, 4, 1293–1301.

49
Chung, W.; Si, M.; Ye, P. D. First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and Gmax/Gmin. In Proceedings of 2018, IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, pp 15.2. 1–15.2. 4.
DOI
50
Jerry, M.; Chen, P. Y.; Zhang, J. C.; Sharma, P.; Ni, K.; Yu, S. M.; Datta, S. Ferroelectric FET analog synapse for acceleration of deep neural network training. In Proceedings of 2017, IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp 6.2. 1–6.2. 4.
DOI
51

Jun, D.; Wei, J.; Png, C. E.; Guangyuan, S.; Son, J.; Yang, H.; Danner, A. J. Deep anisotropic LiNbO3 etching with SF6/Ar inductively coupled plasmas. J. Vac. Sci. Technol. B 2012, 30, 011208.

52

Choi, S.; Tan, S. H.; Li, Z. F.; Kim, Y.; Choi, C.; Chen, P. Y.; Yeon, H.; Yu, S. M.; Kim, J. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 2018, 17, 335–340.

53

Belhumeur, P. N.; Hespanha, J. P.; Kriegman, D. J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720.

54

Wang, T. Y.; Meng, J. L.; Rao, M. Y.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Bao, W. Z.; Zhou, P. et al. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 2020, 20, 4111–4120.

55

Sun, J.; Oh, S.; Choi, Y.; Seo, S.; Oh, M. J.; Lee, M.; Lee, W. B.; Yoo, P. J.; Cho, J. H.; Park, J. H. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater. 2018, 28, 1804397.

56

Seo, S.; Jo, S. H.; Kim, S.; Shim, J.; Oh, S.; Kim, J. H.; Heo, K.; Choi, J. W.; Choi, C.; Oh, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 2018, 9, 5106.

57

Hou, Y. X.; Li, Y.; Zhang, Z. C.; Li, J. Q.; Qi, D. H.; Chen, X. D.; Wang, J. J.; Yao, B. W.; Yu, M. X.; Lu, T. B. et al. Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 2021, 15, 1497–1508.

58

Kwon, K. C.; Zhang, Y. S.; Wang, L.; Yu, W.; Wang, X. J.; Oark, I. H.; Choi, H. S.; Ma, T.; Zhu, Z. Y.; Tian, B. B. et al. In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano 2020, 14, 7628–7638.

59

Ge, C.; Liu, C. X.; Zhou, Q. L.; Zhang, Q. H.; Du, J. Y.; Li, J. K.; Wang, C.; Gu, L.; Yang, G. Z.; Jin, K. J. A ferrite synaptic transistor with topotactic transformation. Adv. Mater. 2019, 31, 1900379.

60

Wang, S. Y.; Liu, L.; Gan, L. R.; Chen, H. W.; Hou, X.; Ding, Y.; Ma, S. L.; Zhang, D. W.; Zhou, P. Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 2021, 12, 53.

File
12274_2021_3899_MOESM1_ESM.pdf (426.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 August 2021
Revised: 13 September 2021
Accepted: 22 September 2021
Published: 10 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFA0308500) and the National Natural Science Foundation of China (No. 61904034). We acknowledge the use of the Yale Face Database. We thank David MacDonald, MSc, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Return