Journal Home > Volume 15 , Issue 4

Flexible memory devices are promising for information storage and data processing applications in portable, wearable, and smart electronics operating under curved conditions. In this work, we realized high-performance flexible ferroelectric capacitors based on Hf0.5Zr0.5O2 (HZO) thin film by depositing a buffer layer of Al2O3 on polyimide (PI) substrates using atomic layer deposition (ALD). The flexible ferroelectric HZO films exhibit high remnant polarization (Pr) of 21 μC/cm2. Furthermore, deterioration of polarization, retention, and endurance performance was not observed even at a bending radius of 2 mm after 5,000 bending cycles. This work marks a critical step in the development of high-performance flexible HfO2-based ferroelectric memories for next-generation wearable electronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible Hf0.5Zr0.5O2 ferroelectric thin films on polyimide with improved ferroelectricity and high flexibility

Show Author's information Yuting Chen1,2Yang Yang1,2Peng Yuan1,2Pengfei Jiang1,2Yuan Wang1,2Yannan Xu1,2Shuxian Lv1,2Yaxin Ding1,2Zhiwei Dang1,2Zhaomeng Gao1,2Tiancheng Gong1,2Yan Wang1,2Qing Luo1,2,3( )
Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
University of Chinese Academy of Sciences, Beijing 100049, China
Department of Mathematics and Theories, Peng Cheng Laboratory, No.2, Xingke 1st Street, Nanshan, Shenzhen 518000, China

Abstract

Flexible memory devices are promising for information storage and data processing applications in portable, wearable, and smart electronics operating under curved conditions. In this work, we realized high-performance flexible ferroelectric capacitors based on Hf0.5Zr0.5O2 (HZO) thin film by depositing a buffer layer of Al2O3 on polyimide (PI) substrates using atomic layer deposition (ALD). The flexible ferroelectric HZO films exhibit high remnant polarization (Pr) of 21 μC/cm2. Furthermore, deterioration of polarization, retention, and endurance performance was not observed even at a bending radius of 2 mm after 5,000 bending cycles. This work marks a critical step in the development of high-performance flexible HfO2-based ferroelectric memories for next-generation wearable electronic devices.

Keywords: ferroelectric, flexible, Hf0.5Zr0.5O2(HZO) , Al2O3 buffer layer

References(49)

1

Han, S. T.; Peng, H. Y.; Sun, Q. J.; Venkatesh, S.; Chung, K. S.; Lau, S. C.; Zhou, Y.; Roy, V. A. L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375.

2

Han, S. T.; Zhou. Y.; Roy, V. A. L. Towards the development of flexible non-volatile memories. Adv. Mater. 2013, 25, 5425–5449.

3

Liu, Y. H.; Pharr, M.; Salvatore, G. A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635.

4

Jung, Y. H.; Chang, T. H.; Zhang, H. L.; Yao, C. H.; Zheng, Q. F.; Yang, V. W.; Mi, H. Y.; Kim, M.; Cho, S. J.; Park, D. W. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170.

5

Cheung, Y. F.; Li, K. H.; Choi, H. W. Flexible free-standing III-nitride thin films for emitters and displays. ACS Appl. Mater. Interfaces 2016, 8, 21440–21445.

6

Bauer, S.; Bauer-Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwödiauer, R. 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Adv. Mater. 2014, 26, 149–162.

7

Kim, C. S.; Yang, H. M.; Lee, J.; Lee, G. S.; Choi, H.; Kim, Y. J.; Lim, S. H.; Cho, S. H.; Cho, B. J. Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett. 2018, 3, 501–507.

8

Scott, J. F. Applications of modern ferroelectrics. Science 2007, 315, 954–959.

9

Bez, R.; Pirovano, A. Non-volatile memory technologies: Emerging concepts and new materials. Mater. Sci. Semicond. Process. 2004, 7, 349–355.

10

Xu, T.; Xiang, L. Y.; Xu, M. L.; Xie, W. F.; Wang, W. Excellent low-voltage operating flexible ferroelectric organic transistor nonvolatile memory with a sandwiching ultrathin ferroelectric film. Sci. Rep. 2017, 7, 8890.

11

Lee, G. G.; Tokumitsu, E.; Yoon, S. M.; Fujisaki, Y.; Yoon, J. W.; Ishiwara, H. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene). Appl. Phys. Lett. 2011, 99, 012901.

12

Xu, M. L.; Guo, S. X.; Xiang, L. Y.; Xu, T.; Xie, W. F.; Wang, W. High mobility flexible ferroelectric organic transistor nonvolatile memory with an ultrathin AlOx interfacial layer. IEEE Trans. Electron Dev. 2018, 65, 1113–1118.

13

Khan, M. A.; Bhansali, U. S.; Alshareef, H. N. Fabrication and characterization of all-polymer, transparent ferroelectric capacitors on flexible substrates. Org. Electron. 2011, 12, 2225–2229.

14

Kim, W. Y.; Lee, H. C. Stable ferroelectric poly(vinylidene fluoride-trifluoroethylene) film for flexible nonvolatile memory application. IEEE Electron Dev. Lett. 2012, 33, 260–262.

15

Bakaul, S. R.; Serrao, C. R.; Lee, M.; Yeung, C. W.; Sarker, A.; Hsu, S. L.; Yadav, A. K.; Dedon, L.; You, L.; Khan, A. I. et al. Single crystal functional oxides on silicon. Nat. Commun. 2016, 7, 10547.

16

Ghoneim, M. T.; Zidan, M. A.; Alnassar, M. Y.; Hanna, A. N.; Kosel, J.; Salama, K. N.; Hussain, M. M. Thin PZT-based ferroelectric capacitors on flexible silicon for nonvolatile memory applications. Adv. Electron. Mater. 2015, 1, 1500045.

17

Bretos, I.; Jiménez, R.; Wu, A. Y.; Kingon, A. I.; Vilarinho, P. M.; Calzada, M. L. Activated solutions enabling low-temperature processing of functional ferroelectric oxides for flexible electronics. Adv. Mater. 2014, 26, 1405–1409.

18

Rho, J.; Kim, S. J.; Heo, W. Lee, N. E.; Lee, H. S.; Ahn, J. H. PbZrxTi1xO3 ferroelectric thin-film capacitors for flexible nonvolatile memory applications. IEEE Electron Dev. Lett. 2010, 31, 1017–1019.

19

Jiang, J.; Bitla, Y.; Huang, C. W.; Do, T. H.; Liu, H. J.; Hsieh, Y. H.; Ma, C. H.; Jang, C. Y.; Lai, Y. H.; Chiu, P. W. et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci. Adv. 2017, 3, e1700121.

20

Ren, C. L.; Zhong, G. K.; Xiao, Q. Tan, C. B.; Feng, M.; Zhong, X. L.; An, F.; Wang, J. B.; Zi, M. F.; Tang, M. K. et al. Highly robust flexible ferroelectric field effect transistors operable at high temperature with low-power consumption. Adv. Funct. Mater. 2020, 30, 1906131.

21

Tsai, M. F.; Jiang, J.; Shao, P. W.; Lai, Y. H.; Chen, J. W.; Ho, S. Z.; Chen, Y. C.; Tsai, D. P.; Chu, Y. H. Oxide heteroepitaxy-based flexible ferroelectric transistor. ACS Appl. Mater. Interfaces 2019, 11, 25882–25890.

22

Gao, H.; Yang, Y. X.; Wang, Y. J.; Chen, L.; Wang, J. L.; Yuan, G. L.; Liu, J. M. Transparent, flexible, fatigue-free, optical-read, and nonvolatile ferroelectric memories. ACS Appl. Mater. Interfaces 2019, 11, 35169–35176.

23

Yang, C. H.; Han, Y. J.; Qian, J.; Cheng, Z. X. Flexible, Temperature-stable, and fatigue-endurable PbZr0.52Ti0.48O3 ferroelectric film for nonvolatile memory. Adv. Electron. Mater. 2019, 5, 1900443.

24

Zheng, M.; Li, X. Y.; Ni, H.; Li, X. M.; Gao, J. van der Waals epitaxy for highly tunable all-inorganic transparent flexible ferroelectric luminescent films. J. Mater. Chem. C 2019, 7, 8310–8315.

25

Mikolajick, T.; Müller, S.; Schenk, T.; Yurchuk, E.; Slesazeck, S. Schröder, U.; Flachowsky, S.; van Bentum, R.; Kolodinski, S. Polakowski, P. et al. Doped hafnium oxide-an enabler for ferroelectric field effect transistors. Adv. Sci. Technol. 2014, 95, 136–145.

26

Müller, J.; Polakowski, P.; Mueller, S.; Mikolajick, T. Ferroelectric hafnium oxide based materials and devices: Assessment of current status and future prospects. ECS J. Solid State Sci. Technol. 2015, 4, N30–N35.

27

Park, M. H.; Lee, Y. H.; Kim, H. J.; Moon, T.; Kim, K. D.; Müller, J.; Kersch, A. Schroeder, U.; Mikolajick, T. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 2015, 27, 1811–1831.

28

Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.

29

Wei, Y. F.; Nukala, P.; Salverda, M.; Matzen, S.; Zhao, H. J.; Momand, J.; Everhardt, A. S.; Agnus, G.; Blake, G. R.; Lecoeur, P. et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 2018, 17, 1095–1100.

30
Müller, J.; Böscke, T. S.; Müller, S.; Yurchuk, E.; Polakowski, P.; Paul, J.; Martin, D.; Schenk, T.; Khullar, K.; Kersch, A. et al. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. InInternational Electron Devices Meeting (IEDM), Washington, DC, USA, 2013, pp 10.8. 1–10.8. 4.
31

Cheema, S. S.; Kwon, D.; Shanker, N.; dos Reis, R.; Hsu, S. L.; Xiao, J.; Zhang, H. G.; Wagner, R.; Datar, A. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020, 580, 478–482.

32

Tomida, K.; Kita, K.; Toriumi, A. Dielectric constant enhancement due to Si incorporation into HfO2. Appl. Phys. Lett. 2006, 89, 142902.

33

Fischer, D.; Kersch, A. The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles. Appl. Phys. Lett. 2008, 92, 012908.

34

Müller, J.; Böscke, T. S.; Schröder, U.; Mueller, S.; Bräuhaus, D.; Böttger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318–4323.

35

Liu, H. F.; Lu, T. Q.; Li, Y. X.; Ju, Z. Y.; Zhao, R. T.; Li, J. Z.; Shao, M. H.; Zhang, H. N.; Liang, R. R.; Wang, X. R. et al. Flexible Quasi-van der Waals ferroelectric hafnium-Based oxide for integrated high-performance nonvolatile memory. Adv. Sci. 2020, 7, 2001266.

36

Liu, W. Y.; Liao, J. J.; Jiang, J.; Zhou, Y. C.; Chen, Q.; Mo, S. T.; Yang, Q.; Peng, Q. X.; Jiang, L. M. Highly stable performance of flexible Hf0.6Zr0.4O2 ferroelectric thin films under multi-service conditions. J. Mater. Chem. C 2020, 8, 3878–3886.

37

Xiao, W. W.; Liu, C.; Peng, Y.; Zheng, S. Z.; Feng, Q.; Zhang, C. F.; Zhang, J. C.; Hao, Y.; Liao, M.; Zhou, Y. C. Thermally stable and radiation hard ferroelectric Hf0.5Zr0.5O2 thin films on muscovite mica for flexible nonvolatile memory applications. ACS Appl. Electron. Mater. 2019, 1, 919–927.

38

Liu, W. L.; Wang, H. Flexible oxide epitaxial thin films for wearable electronics: Fabrication, physical properties, and applications. J. Materiomics 2020, 6, 385–396.

39

Walia, S.; Shah, C. M.; Gutruf, P.; Nili, H.; Chowdhury, D. R.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales. Appl. Phy. Rev. 2015, 2, 011303.

40

Yu, H.; Chung, C. C.; Shewmon, N.; Ho, S.; Carpenter, J. H.; Larrabee, R.; Sun, T. L.; Jones, J. L.; Ade, H.; O'Connor, B. T. et al. Flexible inorganic ferroelectric thin films for nonvolatile memory devices. Adv. Funct. Mater. 2017, 27, 1700461.

41

Cao, R. R.; Song, B.; Shang, D. S.; Yang, Y.; Luo, Q.; Wu, S. Y.; Li, Y.; Wang, Y.; Lv, H. B.; Liu, Q. et al. Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode. IEEE Electron Dev. Lett. 2019, 40, 1744–1747.

42

Lee, S. H.; Cho, S. H.; Kim, H. J.; Kim, S. H.; Lee, S. G.; Song, K. H.; Song, P. K. Properties of ITO (indium tin oxide) film deposited by ion-beam-assisted sputter. Mol. Cryst. Liq. Cryst. 2012, 564, 185–190.

43

Wang, Z. Y.; Zhang, R. J.; Lu, H. L; Chen, X.; Sun, Y.; Zhang, Y.; Wei, Y. F.; Xu, J. P.; Wang, S. Y.; Zheng, Y. X. et al. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition. Nanoscale Res. Lett. 2015, 10, 46.

44

Groner, M. D.; Fabreguette, F. H.; Elam, J. W.; George, S. M. Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 2004, 16, 639–645.

45

Ramos, M. M. D. Theoretical study of metal-polyimide interfacial properties. Vacuum 2002, 64, 255–260.

46

Naganuma, H.; Inoue, Y.; Okamura, S. Estimation of leakage current density and remanent polarization of BiFeO3 films with low resistivity by positive, up, negative, and down measurements. Jpn. J. Appl. Phys. 2008, 47, 5558–5560.

47

Rojas, J. P.; Sevilla, G. A. T.; Hussain, M. M. Can we build a truly high performance computer which is flexible and transparent? Sci. Rep. 2013, 3, 2609.

48

Kim, S. J.; Narayan, D.; Lee, J. G.; Mohan, J.; Lee, J. S.; Lee, J.; Kim, H. S.; Byun, Y. C.; Lucero, A. T.; Young, C. D. et al. Large ferroelectric polarization of TiN/Hf0.5Zr0.5O2/TiN capacitors due to stress-induced crystallization at low thermal budget. Appl. Phys. Lett. 2017, 111, 242901.

49

Jang, B. C.; Seong, H.; Kim, S. K.; Kim, J. Y.; Koo, B. J.; Choi, J.; Yang, S. Y.; Im, S. G.; Choi, S. Y. Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition. ACS Appl. Mater. Interfaces 2016, 8, 12951–12958.

File
12274_2021_3896_MOESM1_ESM.pdf (523.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 August 2021
Revised: 08 September 2021
Accepted: 17 September 2021
Published: 12 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 61922083, 61804167, 61834009, 61904200, and 61821091), and in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB44000000).

Return