Journal Home > Volume 15 , Issue 4

Ordered porous solid strong bases (OPSSBs) have attracted great research interest due to the excellent performance as heterogeneous catalysts in various reactions. The main obstacle for fabricating OPSSBs is the requirement of high temperature to produce strong basicity on ordered porous materials. For example, the temperatures of 600–650 °C are required for the decomposition of base precursor NaNO3 to basic sites on mesoporous silica SBA-15 and zeolite Y. Such high decomposition temperatures are energy-intensive and harmful to the structure of supports. Herein, we report the fabrication of OPSSBs by utilizing the redox interaction between base precursor and low-valence metal centers (e.g., Cr3+) in metal-organic frameworks (MOFs). The base precursor NaNO3 on MIL-101(Cr) can be converted to basic sites entirely at 300 °C, which is quite lower than those of the conventional thermal conversion on SBA-15 and zeolite Y (600–650 °C). The exploration on decomposition mechanism reveals that the valence change of Cr3+ to Cr6+ takes place during the conversion of NaNO3 to basic sites. In this way, MOFs-derived base catalysts have been synthesized successfully by the host–guest redox strategy and exhibit high catalytic activity in typical base-catalyzed reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks

Show Author's information Song-Song PengXiang-Bin ShaoYu-Xia LiYao JiangChen GuManish Kumar DinkerXiao-Qin Liu( )Lin-Bing Sun( )
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China

Abstract

Ordered porous solid strong bases (OPSSBs) have attracted great research interest due to the excellent performance as heterogeneous catalysts in various reactions. The main obstacle for fabricating OPSSBs is the requirement of high temperature to produce strong basicity on ordered porous materials. For example, the temperatures of 600–650 °C are required for the decomposition of base precursor NaNO3 to basic sites on mesoporous silica SBA-15 and zeolite Y. Such high decomposition temperatures are energy-intensive and harmful to the structure of supports. Herein, we report the fabrication of OPSSBs by utilizing the redox interaction between base precursor and low-valence metal centers (e.g., Cr3+) in metal-organic frameworks (MOFs). The base precursor NaNO3 on MIL-101(Cr) can be converted to basic sites entirely at 300 °C, which is quite lower than those of the conventional thermal conversion on SBA-15 and zeolite Y (600–650 °C). The exploration on decomposition mechanism reveals that the valence change of Cr3+ to Cr6+ takes place during the conversion of NaNO3 to basic sites. In this way, MOFs-derived base catalysts have been synthesized successfully by the host–guest redox strategy and exhibit high catalytic activity in typical base-catalyzed reactions.

Keywords: metal-organic frameworks, ordered porous solid strong bases, host–guest redox interaction, transesterification reaction, Cr centers

References(58)

1

Zhu, L.; Liu, X. Q.; Jiang, H. L.; Sun, L. B. Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev. 2017, 117, 8129–8176.

2

Sun, L. B.; Liu, X. Q.; Zhou, H. C. Design and fabrication of mesoporous heterogeneous basic catalysts. Chem. Soc. Rev. 2015, 44, 5092–5147.

3

Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46, 126–157.

4

Peng, S. S.; Yang, M. H.; Zhang, W. K.; Li, X. N.; Wang, C.; Yue, M. B. Fabrication of ordered mesoporous solid super base with high thermal stability from mesoporous carbons. Microporous Mesoporous Mater. 2017, 242, 18–24.

5

Li, T. T.; Liu, Y.; Qi, S. C.; Liu, X. Q.; Huang, L.; Sun, L. B. Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base. J. Colloid Interface Sci. 2018, 526, 366–373.

6

Liu, W.; Zhu, L.; Jiang, Y.; Liu, X. Q.; Sun, L. B. Direct fabrication of strong basic sites on ordered nanoporous materials: Exploring the possibility of metal-organic frameworks. Chem. Mater. 2018, 30, 1686–1694.

7

Bitter, J. H.; Seshan, K.; Lercher, J. A. Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. J. Catal. 1997, 176, 93–101.

8

Li, W.; Jiang, Z. J.; Ma, F. Y.; Su, F.; Chen, L.; Zhang, S. Q.; Guo, Y. H. Design of mesoporous SO42−/ZrO2-SiO2(Et) hybrid material as an efficient and reusable heterogeneous acid catalyst for biodiesel production. Green Chem. 2010, 12, 2135–2138.

9

Velu, S.; Suzuki, K.; Okazaki, M.; Kapoor, M. P.; Osaki, T.; Ohashi, F. Oxidative steam reforming of methanol over cuznal(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation. J. Catal. 2000, 194, 373–384.

10

Maillet, T.; Barbier, J. Jr.; Gelin, P.; Praliaud, H.; Duprez, D. Effects of pretreatments on the surface composition of alumina-supported Pd-Rh catalysts. J. Catal. 2001, 202, 367–378.

11

Liu, X. Y.; Sun, L. B.; Lu, F.; Liu, X. D.; Liu, X. Q. Low-temperature generation of strong basicity via an unprecedented guest-host redox interaction. Chem. Commun. 2013, 49, 8087–8089.

12

Zhu, L.; Lu, F.; Liu, X. D.; Liu, X. Q.; Sun, L. B. A new redox strategy for low-temperature formation of strong basicity on mesoporous silica. Chem. Commun. 2015, 51, 10058–10061.

13

Liu, X. Y.; Sun, L. B.; Liu, X. D.; Li, A. G.; Lu, F.; Liu, X. Q. Low-temperature fabrication of mesoporous solid strong bases by using multifunction of a carbon interlayer. ACS Appl. Mater. Interfaces 2013, 5, 9823–9829.

14

Peng, S. S.; Lu, J.; Li, T. T.; Tan, P.; Gu, C.; Wu, Z. Y.; Liu, X. Q.; Sun, L. B. Significant decrease in activation temperature for the generation of strong basicity: A strategy of endowing supports with reducibility. Inorg. Chem. 2019, 58, 8003–8011.

15

Wang, X. G.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. Preparation of ordered large pore SBA-15 silica functionalized with aminopropyl groups through one-pot synthesis. Chem. Commun. 2004, 2762–2763.

16

Xia, Y. D.; Mokaya, R. Highly ordered mesoporous silicon oxynitride materials as base catalysts. Angew. Chem., Int. Ed. 2003, 42, 2639–2644.

17

Li, X. N.; Peng, S. S.; Feng, L. N.; Lu, S. Q.; Ma, L. J.; Yue, M. B. One-pot synthesis of acidic and basic bifunctional catalysts to promote the conversion of ethanol to 1-butanol. Microporous Mesoporous Mater. 2018, 261, 44–50.

18

Liu, N.; Wu, Z. M.; Li, M.; Li, S. S.; Li, Y. F.; Yu, R. D.; Pan, L. S.; Liu, Y. J. A novel strategy for constructing mesoporous solid superbase catalysts: Bimetallic Al-La oxides supported on SBA-15 modified with KF. Catal. Sci. Technol. 2017, 7, 725–733.

19

Peng, S. S.; Wu, J. K.; Peng, A. Z.; Li, Y. X.; Gu, C.; Yue, M. B.; Liu, X. Q.; Sun, L. B. Fabrication of solid strong bases at decreased temperature by doping low-valence Cr3+ into supports. Appl. Catal. A: Gen. 2019, 584, 117153.

20

Zhu, G. Z.; Shi, S.; Liu, M.; Zhao, L.; Wang, M.; Zheng, X.; Gao, J.; Xu, J. Formation of strong basicity on covalent triazine frameworks as catalysts for the oxidation of methylene compounds. ACS Appl. Mater. Interfaces 2018, 10, 12612–12617.

21

Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

22

Xiao, Z. Y.; Mei, Y. J.; Yuan, S.; Mei, H.; Xu, B.; Bao, Y. X.; Fan, L. L.; Kang, W. P.; Dai, F. N.; Wang, R., et al. Controlled hydrolysis of metal-organic frameworks: Hierarchical Ni/Co-layered double hydroxide microspheres for high-performance supercapacitors. ACS Nano 2019, 13, 7024–7030.

23

Pang, J. D.; Yuan, S.; Qin, J. S.; Wu, M. Y.; Lollar, C. T.; Li, J. L.; Huang, N.; Li, B.; Zhang, P.; Zhou, H. C. Enhancing pore-environment complexity using a trapezoidal linker: Toward stepwise assembly of multivariate quinary metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 12328–12332.

24

Zeng, X. M.; Yan, S. Q.; Chen, P.; Du, W.; Liu, B. F. Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy. Nano Res. 2020, 13, 1527–1535.

25

Jiang, Y.; Tan, P.; Qi, S. C.; Liu, X. Q.; Yan, J. H.; Fan, F.; Sun, L. B. Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: Efficient adsorbents for tailorable CO2 capture. Angew. Chem., Int. Ed. 2019, 58, 6600–6604.

26

Sun, Q.; Tang, Y. Q.; Aguila, B.; Wang, S.; Xiao, F. S.; Thallapally, P. K.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Q. Reaction environment modification in covalent organic frameworks for catalytic performance enhancement. Angew. Chem., Int. Ed. 2019, 58, 8670–8675.

27

Gao, W. Y.; Thiounn, T.; Wojtas, L.; Chen, Y. S.; Ma, S. Q. Two highly porous single-crystalline zirconium-based metal-organic frameworks. Sci. China Chem. 2016, 59, 980–983.

28

Peng, Y.; Yang, W. S. Metal-organic framework nanosheets: A class of glamorous low-dimensional materials with distinct structural and chemical natures. Sci. China Chem. 2019, 62, 1561–1575.

29

Chen, Z. J.; Li, P. H.; Zhang, X.; Mian, M. R.; Wang, X. J.; Li, P.; Liu, Z. C.; O’Keeffe, M.; Stoddart, J. F.; Farha, O. K. Reticular exploration of uranium-based metal-organic frameworks with hexacarboxylate building units. Nano Res. 2021, 14, 376–380.

30

Jiang, Y.; Park, J.; Tan, P.; Feng, L.; Liu, X. Q.; Sun, L. B.; Zhou, H. C. Maximizing photoresponsive efficiency by isolating metal-organic polyhedra into confined nanoscaled spaces. J. Am. Chem. Soc. 2019, 141, 8221–8227.

31

Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

32

Niu, Z.; Cui, X. L.; Pham, T.; Lan, P. C.; Xing, H. B.; Forrest, K. A.; Wojtas, L.; Space, B.; Ma, S. Q. A metal-organic framework based methane nano-trap for the capture of coal-mine methane. Angew. Chem., Int. Ed. 2019, 58, 10138–10141.

33

Li, J. K.; Lv, F.; Li, J. X.; Li, Y. X.; Gao, J. D.; Luo, J.; Xue, F.; Ke, Q. F.; Xu, H. Cobalt-based metal-organic framework as a dual cooperative controllable release system for accelerating diabetic wound healing. Nano Res. 2020, 13, 2268–2279.

34

Jiang, J. C.; Yaghi, O. M. Brønsted acidity in metal-organic frameworks. Chem. Rev. 2015, 115, 6966–6997.

35

Leo, P.; Orcajo, G.; Briones, D.; Rodríguez-Diéguez, A.; Choquesillo-Lazarte, D.; Calleja, G.; Martinez, F. A double basic Sr-amino containing MOF as a highly stable heterogeneous catalyst. Dalton Trans. 2019, 48, 11556–11564.

36

Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525–8529.

37

Gascon, J.; Aktay, U.; Hernandez-Alonso, M. D.; Van Klink, G. P. M.; Kapteijn, F. Amino-based metal-organic frameworks as stable, highly active basic catalysts. J. Catal. 2009, 261, 75–87.

38

Flaig, R. W.; Popp, T. M. O.; Fracaroli, A. M.; Kapustin, E. A.; Kalmutzki, M. J.; Altamimi, R. M.; Fathieh, F.; Reimer, J. A.; Yaghi, O. M. The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions. J. Am. Chem. Soc. 2017, 139, 12125–12128.

39

Savonnet, M.; Bazer-Bachi, D.; Bats, N.; Perez-Pellitero, J.; Jeanneau, E.; Lecocq, V.; Pinel, C.; Farrusseng, D. Generic postfunctionalization route from amino-derived metal-organic frameworks. J. Am. Chem. Soc. 2010, 132, 4518–4519.

40

Li, T. T.; Gao, X. J.; Qi, S. C.; Huang, L.; Peng, S. S.; Liu, W.; Liu, X. Q.; Sun, L. B. Potassium-incorporated mesoporous carbons: Strong solid bases with enhanced catalytic activity and stability. Catal. Sci. Technol. 2018, 8, 2794–2801.

41

Rodriguez-Gomez, A.; Holgado, J. P.; Caballero, A. Cobalt carbide identified as catalytic site for the dehydrogenation of ethanol to acetaldehyde. ACS Catal. 2017, 7, 5243–5247.

42

Tan, H. Z.; Chen, Z. N.; Xu, Z. N.; Sun, J.; Wang, Z. Q.; Si, R.; Zhuang, W.; Guo, G. C. Synthesis of high-performance and high-stability Pd(ii)/nay catalyst for CO direct selective conversion to dimethyl carbonate by rational design. ACS Catal. 2019, 9, 3595–3603.

43

Chen, Y. D.; Wang, H.; Qin, Z. X.; Tian, S. L.; Ye, Z. B.; Ye, L.; Abroshan, H.; Li, G. TixCe1-xO2 nanocomposites: A monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate. Green Chem. 2019, 21, 4642–4649.

44

Wang, Y.; Liu, C. L.; Sun, J. H.; Yang, R. Z.; Dong, W. S. Ordered mesoporous BaCO3/C-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Sci. China Chem. 2015, 58, 708–715.

45

Guo, M. Y.; Liu, Q. L.; Zhao, P. P.; Han, J. F.; Li, X.; Ha, Y.; Fu, Z. C.; Song, C. F.; Ji, N.; Liu, C. X. et al. Promotional effect of SO2 on Cr2O3 catalysts for the marine NH3-SCR reaction. Chem. Eng. J. 2019, 361, 830–838.

46

Wang, A. Y.; Guo, Y. L.; Gao, F.; Peden, C. H. F. Ambient-temperature no oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: Significant promoting effect of ZrO2. Appl. Catal. B: Environ. 2017, 202, 706–714.

47

Węgrzyniak, A.; Jarczewski, S.; Wach, A.; Hędrzak, E.; Kuśtrowski, P.; Michorczyk, P. Catalytic behaviour of chromium oxide supported on CMK-3 carbon replica in the dehydrogenation propane to propene. Appl. Catal. A: Gen. 2015, 508, 1–9.

48

Wen, T.; Wang, J.; Yu, S. J.; Chen, Z. S.; Hayat, T.; Wang, X. K. Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(V), Cr(VI), humic acid, and dyes. ACS Sustainable Chem. Eng. 2017, 5, 4371–4380.

49

Corro, G.; Sánchez, N.; Pal, U.; Cebada, S.; Fierro, J. L. G. Solar-irradiation driven biodiesel production using Cr/SiO2 photocatalyst exploiting cooperative interaction between Cr6+ and Cr3+ moieties. Appl. Catal. B:Environ. 2017, 203, 43–52.

50

Feng, F.; Yang, W. Y.; Gao, S.; Sun, C. X.; Li, Q. Postillumination activity in a single-phase photocatalyst of Mo-doped TiO2 nanotube array from its photocatalytic “memory”. ACS Sustainable Chem. Eng. 2018, 6, 6166–6174.

51

Zhao, X. H.; Wang, X. L. Synthesis, characterization and catalytic application of Cr-SBA-1 mesoporous molecular sieves. J. Mole. Catal. A:Chem. 2007, 261, 225–231.

52

Sun, B.; Reddy, E. P.; Smirniotis, P. G. Effect of the Cr6+ concentration in Cr-incorporated TiO2-loaded MCM-41 catalysts for visible light photocatalysis. Appl. Catal. B: Environ. 2005, 57, 139–149.

53

Li, P. P.; Lang, W. Z.; Xia, K.; Luan, L.; Yan, X.; Guo, Y. J. The promotion effects of Ni on the properties of Cr/Al catalysts for propane dehydrogenation reaction. Appl. Catal. A: Gen. 2016, 522, 172–179.

54

Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. A.; Han, A. J., et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem., Int. Ed. 2018, 57, 8614–8618.

55

Zhao, J. J.; Boada, R.; Cibin, G.; Palet, C. Enhancement of selective adsorption of Cr species via modification of pine biomass. Sci. Total Environ. 2021, 756, 143816.

56

Luo, E. G.; Zhang, H.; Wang, X.; Gao, L. Q.; Gong, L. Y.; Zhao, T.; Jin, Z.; Ge, J. J.; Jiang, Z.; Liu, C. P., et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew. Chem., Int. Ed 2019, 58, 12469–12475.

57

Vieira, R. S.; Meneghetti, E.; Baroni, P.; Guibal, E.; De La Cruz, V. M. G.; Caballero, A.; Rodríguez-Castellón, E.; Beppu, M. M. Chromium removal on chitosan-based sorbents-an EXAFS/XANES investigation of mechanism. Mater. Chem. Phys. 2014, 146, 412–417.

58

Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H., et al. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2016, 55, 6708–6712.

File
12274_2021_3892_MOESM1_ESM.pdf (612.5 KB)
Publication history
Copyright

Publication history

Received: 06 April 2021
Revised: 23 August 2021
Accepted: 16 September 2021
Published: 20 October 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return