Journal Home > Volume 15 , Issue 2

The design and synthesis of energetic materials with a compatibility of high energy and insensitivity have always been the research fronts in military and civilian fields. Considering excellent performances of porous organic frameworks and the lack of research in the field of energetic materials, in this study, a new concept named energetic porous aromatic frameworks (EPAFs) is proposed. The strategy of coating high energy explosives such as 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) in the EPAFs by wet-infiltration method has successfully realized the assembly of target energetic composite materials. The results show that the 75 wt.% CL-20@EPAF-1 possesses the safer impact sensitivity of 31.4 J than that of CL-20 (4.0 J). Notably, for 75 wt.% CL-20@EPAF-1, in addition to the superior detonation performances of the detonation velocity (8,761 m·s−1) and detonation pressure (31.27 GPa), the synergistic effect of the nitrogen-rich EPAFs and the nitramines high energy explosives results in a higher heat of detonation that surpasses the most of pristine high explosives and reported novel energetic materials. In prospect, energetic porous aromatic frameworks could be a promising and inspiring strategy to build high energy insensitive energetic materials.

File
12274_2021_3888_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 August 2021
Revised: 15 September 2021
Accepted: 15 September 2021
Published: 24 October 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the Key Project of National Defense Basic Research Program of China (No. 2019-JCJQ-ZD-139-00), and the National Natural Science Foundation of China (No. 22075040).

Return