Journal Home > Volume 16 , Issue 4

Synergistically combining biological whole-cell bacteria with man-made semiconductor materials innovates the way for sustainable solar-driven CO2 fixation, showing great promise to break through the bottleneck in traditional chemical photocatalyst systems. However, most of the biohybrids require uneconomical organic nutrients and anaerobic conditions for the successful cultivation of the bacteria to sustain the CO2 fixation, which severely limits their economic viability and applicability for practical application. Herein, we present an inorganic-biological hybrid system composed of obligate autotrophic bacteria Thiobacillus thioparus (T. thioparus) and CdS nanoparticles (NPs) biologically precipitated on the bacterial surface, which can achieve efficient CO2 fixation based entirely on cost-effective inorganic salts and without the restriction of anaerobic conditions. The optimized interface between CdS NPs and T. thioparus formed by biological precipitation plays an essential role for T. thioparus efficiently receiving photogenerated electrons from CdS NPs and thus changing the autotrophic way from chemoautotroph to photoautotroph. As a result, the CdS–T. thioparus biohybrid realizes the solar-driven CO2 fixation to produce multi-carbon glutamate synthase and biomass under visible-light irradiation with CO2 as the only carbon source. This work provides significant inspiration for the further exploration of the solar-driven self-replicating biocatalytic system to achieve CO2 fixation and conversion.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biosynthetic CdS–Thiobacillus thioparus hybrid for solar-driven carbon dioxide fixation

Show Author's information Guangyu Liu1,2Feng Gao1Hongwei Zhang1Lei Wang3,4( )Chao Gao1( )Yujie Xiong1,2( )
Hefei National Laboratory for Physical Sciences at the Microscale, and School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Institute of Energy, Hefei Comprehensive National Science Center, 350 Shushanhu Rd., Hefei 230031, China
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

Abstract

Synergistically combining biological whole-cell bacteria with man-made semiconductor materials innovates the way for sustainable solar-driven CO2 fixation, showing great promise to break through the bottleneck in traditional chemical photocatalyst systems. However, most of the biohybrids require uneconomical organic nutrients and anaerobic conditions for the successful cultivation of the bacteria to sustain the CO2 fixation, which severely limits their economic viability and applicability for practical application. Herein, we present an inorganic-biological hybrid system composed of obligate autotrophic bacteria Thiobacillus thioparus (T. thioparus) and CdS nanoparticles (NPs) biologically precipitated on the bacterial surface, which can achieve efficient CO2 fixation based entirely on cost-effective inorganic salts and without the restriction of anaerobic conditions. The optimized interface between CdS NPs and T. thioparus formed by biological precipitation plays an essential role for T. thioparus efficiently receiving photogenerated electrons from CdS NPs and thus changing the autotrophic way from chemoautotroph to photoautotroph. As a result, the CdS–T. thioparus biohybrid realizes the solar-driven CO2 fixation to produce multi-carbon glutamate synthase and biomass under visible-light irradiation with CO2 as the only carbon source. This work provides significant inspiration for the further exploration of the solar-driven self-replicating biocatalytic system to achieve CO2 fixation and conversion.

Keywords: cadmium sulfide, biohybrids, carbon cycle, autotrophic bacteria, solar-driven CO2 fixation, Thiobacillus thioparus

References(46)

[1]

Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 2020, 10, 5734–5749.

[2]

Kong, T. T.; Jiang, Y. W.; Xiong, Y. J. Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation. Chem. Soc. Rev. 2020, 49, 6579–6591.

[3]

Xu, C. P.; Anusuyadevi, P. R.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902.

[4]

Balasubramanian, S.; Wang, P.; Schaller, R. D.; Rajh, T.; Rozhkova, E. A. High-performance bioassisted nanophotocatalyst for hydrogen production. Nano Lett. 2013, 13, 3365–3371.

[5]

Sakimoto, K. K.; Kornienko, N.; Yang, P. D. Cyborgian material design for solar fuel production: The emerging photosynthetic biohybrid systems. Acc. Chem. Res. 2017, 50, 476–481.

[6]

Wang, P.; Chang, A. Y.; Novosad, V.; Chupin, V. V.; Schaller, R. D.; Rozhkova, E. A. Cell-free synthetic biology chassis for nanocatalytic photon-to-hydrogen conversion. ACS Nano 2017, 11, 6739–6745.

[7]

Wang, P.; Dimitrijevic, N. M.; Chang, A. Y.; Schaller, R. D.; Liu, Y. Z.; Rajh, T.; Rozhkova, E. A. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst. ACS Nano 2014, 8, 7995–8002.

[8]

Woo, H. M. Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 2017, 45, 1–7.

[9]

Chen, Z. W.; De Queiros Silveira, G.; Ma, X. D.; Xie, Y. S.; Wu, Y. A.; Barry, E.; Rajh, T.; Fry, H. C.; Laible, P. D.; Rozhkova, E. A. Light-gated synthetic protocells for plasmon-enhanced chemiosmotic gradient generation and ATP synthesis. Angew. Chem., Int. Ed. 2019, 58, 4896–4900.

[10]

Sakimoto, K. K.; Kornienko, N.; Cestellos-Blanco, S.; Lim, J.; Liu, C.; Yang, P. D. Physical biology of the materials-microorganism interface. J. Am. Chem. Soc. 2018, 140, 1978–1985.

[11]

Honda, Y.; Hagiwara, H.; Ida, S.; Ishihara, T. Application to photocatalytic H2 production of a whole-cell reaction by recombinant Escherichia coli cells expressing [FeFe]-hydrogenase and maturases genes. Angew. Chem., Int. Ed. 2016, 55, 8045–8048.

[12]

Cestellos-Blanco, S.; Zhang, H.; Yang, P. D. Solar-driven carbon dioxide fixation using photosynthetic semiconductor bio-hybrids. Faraday Discuss. 2019, 215, 54–65.

[13]

Brown, K. A.; Dayal, S.; Ai, X.; Rumbles, G.; King, P. W. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 2010, 132, 9672–9680.

[14]

Wang, W. Y.; Chen, J.; Li, C.; Tian, W. M. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat. Commun. 2014, 5, 4647.

[15]

Wilker, M. B.; Shinopoulos, K. E.; Brown, K. A.; Mulder, D. W.; King, P. W.; Dukovic, G. Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H2 generation. J. Am. Chem. Soc. 2014, 136, 4316–4324.

[16]

Jeong, H. E.; Kim, I.; Karam, P.; Choi, H. J.; Yang, P. D. Bacterial recognition of silicon nanowire arrays. Nano Lett. 2013, 13, 2864–2869.

[17]

Liu, C.; Sakimoto, K. K.; Colón, B. C.; Silver, P. A.; Nocera, D. G. Ambient nitrogen reduction cycle using a hybrid inorganic-biological system. Proc. Natl. Acad. Sci. USA 2017, 114, 6450–6455.

[18]

Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77.

[19]

Torella, J. P.; Gagliardi, C. J.; Chen, J. S.; Bediako, D. K.; Colón, B.; Way, J. C.; Silver, P. A.; Nocera, D. G. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl. Acad. Sci. USA 2015, 112, 2337–2342.

[20]

Das, A.; Hessin, C.; Ren, Y. F.; Murr, M. D. E. Biological concepts for catalysis and reactivity: Empowering bioinspiration. Chem. Soc. Rev. 2020, 49, 8840–8867.

[21]

Nichols, E. M.; Gallagher, J. J.; Liu, C.; Su, Y. D.; Resasco, J.; Yu, Y.; Sun, Y. J.; Yang, P. D.; Chang, M. C. Y.; Chang, C. J. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl. Acad. Sci. USA 2015, 112, 11461–11466.

[22]

Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 2018, 13, 900–905.

[23]

Ye, J.; Yu, J.; Zhang, Y. Y.; Chen, M.; Liu, X.; Zhou, S. G.; He, Z. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Appl. Catal. B: Environ. 2019, 257, 117916.

[24]

Wang, B.; Jiang, Z. F.; Yu, J. C.; Wang, J. F.; Wong, P. K. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale 2019, 11, 9296–9301.

[25]

Cestellos-Blanco, S.; Zhang, H.; Kim, J. M.; Shen, Y. X.; Yang, P. D. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 2020, 3, 245–255.

[26]

Jensen, E. S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 5.

[27]

Flores, M.; Toldrá, F. Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products—Invited review. Meat Sci. 2021, 171, 108272.

[28]

Logan, B. E.; Rossi, R.; Ragab, A.; Saikaly, P. E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 2019, 17, 307–319.

[29]

Singh, A. K.; Chandra, R. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. Aquat. Toxicol. 2019, 211, 202–216.

[30]

Brown, C. T.; Hug, L. A.; Thomas, B. C.; Sharon, I.; Castelle, C. J.; Singh, A.; Wilkins, M. J.; Wrighton, K. C.; Williams, K. H.; Banfield, J. F. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 2015, 523, 208–211.

[31]

Hart, K. M.; Kulakova, A. N.; Allen, C. C. R.; Simpson, A. J.; Oppenheimer, S. F.; Masoom, H.; Courtier-Murias, D.; Soong, R.; Kulakov, L. A.; Flanagan, P. V. et al. Tracking the fate of microbially sequestered carbon dioxide in soil organic matter. Environ. Sci. Technol. 2013, 47, 5128–5137.

[32]

Kerfeld, C. A.; Melnicki, M. R. Assembly, function and evolution of cyanobacterial carboxysomes. Curr. Opin. Plant Biol. 2016, 31, 66–75.

[33]
Hutt, L. P.; Huntemann, M.; Clum, A.; Pillay, M.; Palaniappan, K.; Varghese, N.; Mikhailova, N.; Stamatis, D.; Reddy, T.; Daum, C. et al. Permanent draft genome of Thiobacillus thioparus DSM 505T, an obligately chemolithoautotrophic member of the Betaproteobacteria. Stand. Genomic Sci. 2017, 12, 10.
[34]

Wang, Y. N.; Kai, Y.; Wang, L.; Tsang, Y. F.; Fu, X. H.; Hu, J. J.; Xie, Y. J. Key internal factors leading to the variability in CO2 fixation efficiency of different sulfur-oxidizing bacteria during autotrophic cultivation. J. Environ. Manage. 2020, 271, 110957.

[35]

Wang, Y. N.; Tsang, Y. F.; Wang, L.; Fu, X. H.; Hu, J. J.; Li, H.; Le, Y. Q. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination. Bioresour. Technol. 2018, 252, 44–51.

[36]

Wang, Y. N.; Wang, L.; Tsang, Y. F.; Fu, X. H.; Hu, J. J.; Li, H.; Le, Y. Q. The variability in carbon fixation characteristics of several typical chemoautotrophic bacteria at low and high concentrations of CO2 and its mechanism. Int. Biodeter. Biodegr. 2016, 113, 105–112.

[37]
Zhang, Y. P.; Pohlmann, E. L.; Roberts, G. P. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. J. Bacteriol. 2005, 187, 1254–1265.
[38]

Pokorna, D.; Zabranska, J. Sulfur-oxidizing bacteria in environmental technology. Biotechnol. Adv. 2015, 33, 1246–1259.

[39]

Wang, B.; Zeng, C. P.; Chu, K. H.; Wu, D.; Yip, H. Y.; Ye, L. Q.; Wong, P. K. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles. Adv. Energy Mater. 2017, 7, 1700611.

[40]

Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of Colloidal Semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 1987, 109, 5649–5655.

[41]

Zhang, W.; Wang, Y. B.; Wang, Z.; Zhong, Z. Y.; Xu, R. Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light. Chem. Commun. 2010, 46, 7631–7633.

[42]
Chen, M.; Zhou, X. F.; Yu, Y. Q.; Liu, X.; Zeng, R. J. X.; Zhou, S. G.; He, Z. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans. Environ. Int. 2019, 127, 353–360.
[43]

Kornienko, N.; Sakimoto, K. K.; Herlihy, D. M.; Nguyen, S. C.; Alivisatos, A. P.; Harris, C. B.; Schwartzberg, A.; Yang, P. D. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. Proc. Natl. Acad. Sci. USA 2016, 113, 11750–11755.

[44]

Michelet, L.; Zaffagnini, M.; Morisse, S.; Sparla, F.; Pérez-Pérez, M. E.; Francia, F.; Danon, A.; Marchand, C. H.; Fermani, S.; Trost, P. et al. Redox regulation of the Calvin-Benson cycle: Something old, something new. Front. Plant Sci. 2013, 4, 470.

[45]

Fuchs, G. Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life. Annu. Rev. Microbiol. 2011, 65, 631–658.

[46]

Zhou, J.; Yang, Y.; Zhang, C. Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717.

File
12274_2021_3883_MOESM1_ESM.pdf (598.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 August 2021
Revised: 06 September 2021
Accepted: 10 September 2021
Published: 11 October 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2020YFA0406103), the National Natural Science Foundation of China (Nos. 21725102, 91961106, and 91963108), DNL Cooperation Fund, CAS (No. DNL201922), and Youth Innovation Promotion Association CAS.

Return