Journal Home > Volume 16 , Issue 4

Carbon nitride (C3N4) holds great promise for photocatalytic H2O2 production from oxygen reduction. In spite of great research efforts, they still suffer from low catalytic efficiency primarily limited by the fast recombination of photogenerated charge carriers. In this work, we report the multiscale structural engineering of C3N4 to significantly improve its optoelectronic properties and consequently photocatalytic performance. The product consists of porous spheres with high surface areas, abundant nitrogen defects, and alkali metal doping. Under visible light irradiation, our catalyst shows a remarkable H2O2 production rate of 3,080 μmol·g−1·h−1, which is more than 10 times higher than that of bulk C3N4 and exceeds those of most other C3N4-based photocatalysts. Moreover, the catalyst exhibits great stability, and can continuously work for 15 h without obvious activity decay under visible light irradiation, eventually giving rise to a high H2O2 concentration of ca. 45 mM.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production

Show Author's information Qing He1Bounxome Viengkeo1Xuan Zhao1Zhengyuan Qin2Jie Zhang1Xiaohan Yu1Yongpan Hu1Wei Huang1( )Yanguang Li1,3( )
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, China

Abstract

Carbon nitride (C3N4) holds great promise for photocatalytic H2O2 production from oxygen reduction. In spite of great research efforts, they still suffer from low catalytic efficiency primarily limited by the fast recombination of photogenerated charge carriers. In this work, we report the multiscale structural engineering of C3N4 to significantly improve its optoelectronic properties and consequently photocatalytic performance. The product consists of porous spheres with high surface areas, abundant nitrogen defects, and alkali metal doping. Under visible light irradiation, our catalyst shows a remarkable H2O2 production rate of 3,080 μmol·g−1·h−1, which is more than 10 times higher than that of bulk C3N4 and exceeds those of most other C3N4-based photocatalysts. Moreover, the catalyst exhibits great stability, and can continuously work for 15 h without obvious activity decay under visible light irradiation, eventually giving rise to a high H2O2 concentration of ca. 45 mM.

Keywords: carbon nitride, oxygen reduction, multiscale structural engineering, photocatalytic H2O2 production

References(49)

[1]

Bryliakov, K. P. Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem. Rev. 2017, 117, 11406–11459.

[2]

Shaegh, S. A. M.; Nguyen, N. T.; Mousavi Ehteshami, S. M.; Chan, S. H. A membraneless hydrogen peroxidefuel cell using Prussian Blue as cathode material. Energy Environ. Sci. 2012, 5, 8225–8228.

[3]

Zhao, X.; Wang, Y.; Da, Y. L.; Wang, X. X.; Wang, T. T.; Xu, M. Q.; He, X. Y.; Zhou, W.; Li, Y. F.; Coleman, J. N. et al. Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. Natl. Sci. Rev. 2020, 7, 1360–1366.

[4]

Zhao, X.; Yang, H.; Xu, J.; Cheng, T.; Li, Y. G. Bimetallic PdAu nanoframes for electrochemical H2O2 production in acids. ACS Mater. Lett. 2021, 3, 996–1002.

[5]

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

[6]

Hou, H. L.; Zeng, X. K.; Zhang, X. W. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem., Int. Ed. 2020, 59, 17356–17376.

[7]

Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. CO2 reduction: From the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194.

[8]

Teranishi, M.; Naya, S. I.; Tada, H. In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium(IV) dioxide photocatalyst. J. Am. Chem. Soc. 2010, 132, 7850–7851.

[9]

Moon, G. H.; Kim, W.; Bokare, A. D.; Sung, N. E.; Choi, W. Solar production of H2O2 on reduced graphene oxide-TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ. Sci. 2014, 7, 4023–4028.

[10]

Baran, T.; Wojtyła, S.; Minguzzi, A.; Rondinini, S.; Vertova, A. Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Appl. Catal. B Environ. 2019, 244, 303–312.

[11]

Li, X. Z.; Chen, C. C.; Zhao, J. C. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 2001, 17, 4118–4122.

[12]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

[13]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[14]

Zhu, B. C.; Cheng, B.; Zhang, L. Y.; Yu, J. G. Review on DFT calculation of s-triazine-based carbon nitride. Carbon Energy 2019, 1, 32–56.

[15]

Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780.

[16]

Ou, H. H.; Yang, P. J.; Lin, L. H.; Anpo, M.; Wang, X. C. Carbon nitride aerogels for the photoredox conversion of water. Angew. Chem., Int. Ed. 2017, 56, 10905–10910.

[17]

Wu, S.; Yu, H. T.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380–14389.

[18]

Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B Environ. 2019, 258, 117956.

[19]

Shiraishi, Y.; Kofuji, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 2015, 5, 3058–3066.

[20]

Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

[21]

Tian, J.; Wang, D.; Li, S. T.; Pei, Y.; Qiao, M. H.; Li, Z. H.; Zhang, J. L.; Zong, B. N. KOH-assisted band engineering of polymeric carbon nitride for visible light photocatalytic oxygen reduction to hydrogen peroxide. ACS Sustain. Chem. Eng. 2019, 8, 594–603.

[22]

Jun, Y. S.; Lee, E. Z.; Wang, X. C.; Hong, W. H.; Stucky, G. D.; Thomas, A. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 2013, 23, 3661–3667.

[23]

Zhao, Y. X.; Zhang, S.; Shi, R.; Waterhouse, G. I. N.; Tang, J. W.; Zhang, T. R. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91.

[24]

Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 2019, 12, 2385–2389.

[25]

Zhang, P.; Tong, Y. W.; Liu, Y.; Vequizo, J. J. M.; Sun, H. W.; Yang, C.; Yamakata, A.; Fan, F. T.; Lin, W.; Wang, X. C. et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew. Chem., Int. Ed. 2020, 59, 16209–16217.

[26]

Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 2003, 125, 10288–10300.

[27]

Chang, C.; Fu, Y.; Hu, M.; Wang, C. Y.; Shan, G. Q.; Zhu, L. Y. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Appl. Catal. B Environ. 2013, 142–143,553-560.

[28]

Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Zhao, Z. K. Promoting effect of cyano groups attached on g-C3N4 nanosheets towards molecular oxygen activation for visible light-driven aerobic coupling of amines to imines. J. Catal. 2018, 366, 237–244.

[29]

Shi, L.; Yang, L. Q.; Zhou, W.; Liu, Y. Y.; Yin, L. S.; Hai, X.; Song, H.; Ye, J. H. Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 2018, 14, 1703142.

[30]

Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

[31]

Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T. et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 2016, 26, 6822–6829.

[32]

Chen, X. J.; Wang, J.; Chai, Y. Q.; Zhang, Z. J.; Zhu, Y. F. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction. Adv. Mater. 2021, 33, 2007479.

[33]

Yu, F.; Wang, L. C.; Xing, Q. J.; Wang, D. K.; Jiang, X. H.; Li, G. C.; Zheng, A. M.; Ai, F. R.; Zou, J. P. Functional groups to modify g-C3N4 for improved photocatalytic activity of hydrogen evolution from water splitting. Chin. Chem. Lett. 2020, 31, 1648–1653.

[34]

Kumar, P.; Vahidzadeh, E.; Thakur, U. K.; Kar, P.; Alam, K. M.; Goswami, A.; Mahdi, N.; Cui, K.; Bernard, G. M.; Michaelis, V. K. et al. C3N5: A low bandgap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications. J. Am. Chem. Soc. 2019, 141, 5415–5436.

[35]

Mikhnenko, O. V.; Blom, P. W. M.; Nguyen, T. Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 2015, 8, 1867–1888.

[36]

Sun, H. L.; Wei, K.; Wu, D.; Jiang, Z. F.; Zhao, H.; Wang, T. Q.; Zhang, Q.; Wong, P. K. Structure defects promoted exciton dissociation and carrier separation for enhancing photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 264, 118480.

[37]

Wei, Z.; Liu, M. L.; Zhang, Z. J.; Yao, W. Q.; Tan, H. W.; Zhu, Y. F. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 2018, 11, 2581–2589.

[38]

Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.

[39]

Zheng, Y.; Yu, Z. H.; Ou, H. H.; Asiri, A. M.; Chen, Y. L.; Wang, X. C. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv. Funct. Mater. 2018, 28, 1705407.

[40]

Moon, G. H.; Fujitsuka, M.; Kim, S.; Majima, T.; Wang, X. C.; Choi, W. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal. 2017, 7, 2886–2895.

[41]

Krishnaraj, C.; Jena, H. S.; Bourda, L.; Laemont, A.; Pachfule, P.; Roeser, J.; Chandran, C. V.; Borgmans, S.; Rogge, S. M. J.; Leus, K. et al. Strongly reducing (diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J. Am. Chem. Soc. 2020, 142, 20107–20116.

[42]

Li, S. N.; Dong, G. H.; Hailili, R.; Yang, L. P.; Li, Y. X.; Wang, F.; Zeng, Y. B.; Wang, C. Y. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B Environ. 2016, 190, 26–35.

[43]

Yu, X. H.; Viengkeo, B.; He, Q.; Zhao, X.; Huang, Q. L.; Li, P. P.; Huang, W.; Li, Y. G. Electronic tuning of covalent triazine framework nanoshells for highly efficient photocatalytic H2O2 production. Adv. Sustain. Syst. 2021, 2100184.

[44]

Zhao, S.; Guo, T.; Li, X.; Xu, T. G.; Yang, B.; Zhao, X. Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Appl. Catal. B 2018, 224, 725–732.

[45]

Zhao, Y. B.; Zhang, P.; Yang, Z. C.; Li, L. N.; Gao, J. Y.; Chen, S.; Xie, T. F.; Diao, C. Z.; Xi, S. B.; Xiao, B. B. et al. Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride. Nat. Commun. 2021, 12, 3701.

[46]

Chen, L.; Chen, C.; Yang, Z.; Li, S.; Chu, C. H.; Chen, B. L. Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride. Adv. Funct. Mater. 2021, 2105731.

[47]

Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 2019, 18, 985–993.

[48]

Wei, Z.; Wang, W. C; Li, W. L.; Bai, X. Q.; Zhao, J. F.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y. F. Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 8236–8242.

[49]

Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 2016, 7, 11470.

File
12274_2021_3882_MOESM1_ESM.pdf (698.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2021
Revised: 02 September 2021
Accepted: 11 September 2021
Published: 29 September 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge the financial support from the National Key R&D Program of China (No. 2017YFA0204800), the National Natural Science Foundation of China (No. 22002100), the Collaborative Innovation Center of Suzhou Nano Science and Technology, and the 111 Project and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Return