Journal Home > Volume 15 , Issue 4

Chiral nanoporous nanoarchitectures exhibit potential applications in various fields including chiral separation, sensing and catalysis. Two-dimensional (2D) supramolecular chemistry offers novel methods to build chiral nanoporous networks from achiral molecules. Herein, we report a series of chiral nanoporous networks built by an achiral precursor molecule via a stepwise annealing strategy on Ag(100). The nanoporous network morphologies and structural details are characterized by high-resolution scanning tunneling microscopy (STM). It is revealed that all vertices within networks are chiral. These chiral vertices are either dimeric, trimeric, or tetrameric. The connection of these chiral vertices gives rise to diverse chiral nanopores with varying shapes and sizes. A strict chirality correlation between nanopores and their vertices is determined. Specifically, enantiomeric vertices of one-pair nanopore enantiomers are always in identical type but opposite handedness. This work serves as a model to investigate the influence of vertex chirality on nanopore chirality of a supramolecular matrix. The attained chiral nanopores could potentially be utilized as templates for surface reaction, chiral recognition, etc. The mirror-symmetric silver adatoms clusters dictated by chiral nanopore are discerned.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chiral nanoporous networks featuring various chiral vertices from an achiral molecule on Ag(100)

Show Author's information Dong HanTao WangJianmin HuangXingyu LiZhiwen ZengJunfa Zhu( )
National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China

Abstract

Chiral nanoporous nanoarchitectures exhibit potential applications in various fields including chiral separation, sensing and catalysis. Two-dimensional (2D) supramolecular chemistry offers novel methods to build chiral nanoporous networks from achiral molecules. Herein, we report a series of chiral nanoporous networks built by an achiral precursor molecule via a stepwise annealing strategy on Ag(100). The nanoporous network morphologies and structural details are characterized by high-resolution scanning tunneling microscopy (STM). It is revealed that all vertices within networks are chiral. These chiral vertices are either dimeric, trimeric, or tetrameric. The connection of these chiral vertices gives rise to diverse chiral nanopores with varying shapes and sizes. A strict chirality correlation between nanopores and their vertices is determined. Specifically, enantiomeric vertices of one-pair nanopore enantiomers are always in identical type but opposite handedness. This work serves as a model to investigate the influence of vertex chirality on nanopore chirality of a supramolecular matrix. The attained chiral nanopores could potentially be utilized as templates for surface reaction, chiral recognition, etc. The mirror-symmetric silver adatoms clusters dictated by chiral nanopore are discerned.

Keywords: scanning tunneling microscopy, two-dimensional chirality, chiral nanoporous networks, chiral vertices

References(65)

1

Heitbaum, M.; Glorius, F.; Escher, I. Asymmetric heterogeneous catalysis. Angew. Chem., Int. Ed. 2006, 45, 4732–4762.

2

Baleizão, C.; Garcia, H. Chiral salen complexes: An overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem. Rev. 2006, 106, 3987–4043.

3

Switzer, J. A.; Kothari, H. M.; Poizot, P.; Nakanishi, S.; Bohannan, E. W. Enantiospecific electrodeposition of a chiral catalyst. Nature 2003, 425, 490–493.

4

Haupert, L. M.; Simpson, G. J. Chirality in nonlinear optics. Annu. Rev. Phys. Chem. 2009, 60, 345–365.

5

Barlow, S. M.; Raval, R. Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surf. Sci. Rep. 2003, 50, 201–341.

6

Huan, J. W.; Zhang, X. M.; Zeng, Q. D. Two-dimensional supramolecular crystal engineering: Chirality manipulation. Phys. Chem. Chem. Phys. 2019, 21, 11537–11553.

7

Zaera, F. Chirality in adsorption on solid surfaces. Chem. Soc. Rev. 2017, 46, 7374–7398.

8

Ernst, K. H. Stereochemical recognition of helicenes on metal surfaces. Acc. Chem. Res. 2016, 49, 1182–1190.

9

Lawton, T. J.; Carrasco, J.; Baber, A. E.; Michaelides, A.; Sykes, E. C. H. Visualization of hydrogen bonding and associated chirality in methanol hexamers. Phys. Rev. Lett. 2011, 107, 256101.

10

Barth, J. V.; Weckesser, J.; Trimarchi, G.; Vladimirova, M.; De Vita, A.; Cai, C. Z.; Brune, H.; Günter, P.; Kern, K. Stereochemical effects in supramolecular self-assembly at surfaces: 1-D versus 2-D enantiomorphic ordering for PVBA and PEBA on Ag(111). J. Am. Chem. Soc. 2002, 124, 7991–8000.

11

Otero, R.; Schöck, M.; Molina, L. M.; Lægsgaard, E.; Stensgaard, I.; Hammer, B.; Besenbacher, F. Guanine quartet networks stabilized by cooperative hydrogen bonds. Angew. Chem., Int. Ed. 2005, 44, 2270–2275.

12

Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Auwärter, W.; Neppl, S.; Kern, K.; Brune, H.; Ruben, M. et al. Chiral kagomé lattice from simple ditopic molecular bricks. J. Am. Chem. Soc. 2008, 130, 11778–11782.

13

Masini, F.; Kalashnyk, N.; Knudsen, M. M.; Cramer, J. R.; Lægsgaard, E.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. Chiral induction by seeding surface assemblies of chiral switches. J. Am. Chem. Soc. 2011, 133, 13910–13913.

14

Kong, H. H.; Qian, Y. Y.; Liu, X. B.; Wan, X. L.; Amirjalayer, S.; Fuchs, H. Long-range chirality recognition of a polar molecule on Au(111). Angew. Chem., Int. Ed. 2020, 132, 188–192.

15

Wang, B.; Jiang, W. R.; Gao, Y.; Teo, B. K.; Wang, Z. G. Chirality recognition in concerted proton transfer process for prismatic water clusters. Nano Res. 2016, 9, 2782–2795.

16

Xu, R. L.; Liu, J.; Chen, F.; Liu, N. H.; Cai, Y. X.; Liu, X. Q.; Song, X.; Dong, M. D.; Wang, L. Room-temperature tracking of chiral recognition process at the single-molecule level. Nano Res. 2015, 8, 3505–3511.

17

Wang, L.; Kong, H. H.; Song, X.; Liu, X. Q.; Wang, H. M. Chiral supramolecular self-assembly of rubrene. Phys. Chem. Chem. Phys. 2010, 12, 14682–14685.

18

Pivetta, M.; Blüm, M. C.; Patthey, F.; Schneider, W. D. Two-dimensional tiling by rubrene molecules self-assembled in supramolecular pentagons, hexagons, and heptagons on a Au(111) surface. Angew. Chem., Int. Ed. 2008, 47, 1076–1079.

19

Lin, N.; Dmitriev, A.; Weckesser, J.; Barth, J. V.; Kern, K. Real-time single-molecule imaging of the formation and dynamics of coordination compounds. Angew. Chem., Int. Ed. 2002, 41, 4779–4783.

20

Messina, P.; Dmitriev, A.; Lin, N.; Spillmann, H.; Abel, M.; Barth, J. V.; Kern, K. Direct observation of chiral metal-organic complexes assembled on a Cu(100) surface. J. Am. Chem. Soc. 2002, 124, 14000–14001.

21

Spillmann, H.; Dmitriev, A.; Lin, N.; Messina, P.; Barth, J. V.; Kern, K. Hierarchical assembly of two-dimensional homochiral nanocavity arrays. J. Am. Chem. Soc. 2003, 125, 10725–10728.

22

Wang, Y. L.; Fabris, S.; Costantini, G.; Kern, K. Tertiary chiral domains assembled by achiral metal-organic complexes on Cu(110). J. Phys. Chem. C 2010, 114, 13020–13025.

23

Chen, Y. H.; Chen, C.; Ding, P. C.; Shi, G. Q.; Sun, Y.; Kantorovich, L. N.; Besenbacher, F.; Yu, M. Molecular recognition and homochirality preservation of guanine tetrads in the presence of melamine. Nano Res. 2020, 13, 2427–2430.

24

Kezilebieke, S.; Amokrane, A.; Boero, M.; Clair, S.; Abel, M.; Bucher, J. P. Steric and electronic selectivity in the synthesis of Fe-1,2,4,5-tetracyanobenzene (TCNB) complexes on Au(111): From topological confinement to bond formation. Nano Res. 2014, 7, 888–897.

25
Hu, J. P.; Liang, Z. F.; Shen, K. C.; Xie, L.; Zhang, H.; Huang, C. Q.; Huang, Y. B.; Huang, H.; Tang, J. X.; Jiang, Z. et al. Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag(111). Nano Res., in press, https://doi.org/10.1007/s12274-021-3409-9.
DOI
26

Wang, L.; Kong, H. H.; Chen, X.; Du, X. L.; Chen, F.; Liu, X. Q.; Wang, H. M. Conformation-induced self-assembly of rubrene on Au(111) surface. Appl. Phys. Lett. 2009, 95, 093102.

27

Li, Q.; Han, C. B.; Horton, S. R.; Fuentes-Cabrera, M.; Sumpter, B. G.; Lu, W. C.; Bernholc, J.; Maksymovych, P.; Pan, M. H. Supramolecular self-assembly of π-conjugated hydrocarbons via 2D cooperative CH/π interaction. ACS Nano 2012, 6, 566–572.

28

Yang, B.; Cao, N.; Ju, H. X.; Lin, H. P.; Li, Y. Y.; Ding, H. H.; Ding, J. Q.; Zhang, J. J.; Peng, C. C.; Zhang, H. M. et al. Intermediate states directed chiral transfer on a silver surface. J. Am. Chem. Soc. 2019, 141, 168–174.

29

Zhang, H. M.; Gong, Z. M.; Sun, K. W.; Duan, R. M.; Ji, P. H.; Li, L.; Li, C.; Müllen, K.; Chi, L. F. Two-dimensional chirality transfer via on-surface reaction. J. Am. Chem. Soc. 2016, 138, 11743–11748.

30

Wang, T.; Lv, H. F.; Huang, J. M.; Shan, H.; Feng, L.; Mao, Y. H.; Wang, J. Y.; Zhang, W. Z.; Han, D.; Xu, Q. et al. Reaction selectivity of homochiral versus heterochiral intermolecular reactions of prochiral terminal alkynes on surfaces. Nat. Commun. 2019, 10, 4122.

31

Pham, T. A.; Tran, B. V.; Nguyen, M. T.; Stöhr, M. Chiral-selective formation of 1D polymers based on ullmann-type coupling: The role of the metallic substrate. Small 2017, 13, 1603675.

32

Mairena, A.; Wäckerlin, C.; Wienke, M.; Grenader, K.; Terfort, A.; Ernst, K. H. Diastereoselective ullmann coupling to bishelicenes by surface topochemistry. J. Am. Chem. Soc. 2018, 140, 15186–15189.

33

Blankenburg, S.; Schmidt, W. G. Long-range chiral recognition due to substrate locking and substrate-adsorbate charge transfer. Phys. Rev. Lett. 2007, 99, 196107.

34

Fasel, R.; Parschau, M.; Ernst, K. H. Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 2006, 439, 449–452.

35

Weigelt, S.; Busse, C.; Petersen, L.; Rauls, E.; Hammer, B.; Gothelf, K. V.; Besenbacher, F.; Linderoth, T. R. Chiral switching by spontaneous conformational change in adsorbed organic molecules. Nat. Mater. 2006, 5, 112–117.

36

Lingenfelder, M.; Tomba, G.; Costantini, G.; Colombi Ciacchi, L.; De Vita, A.; Kern, K. Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level. Angew. Chem., Int. Ed. 2007, 46, 4492–4495.

37
Xu, Y.; Duan, J. J.; Yi, Z. Y.; Zhang, K. X.; Chen, T.; Wang, D. Chirality of molecular nanostructures on surfaces via molecular assembly and reaction: Manifestation and control. Surf. Sci. Rep. 2021, 76, 100531.https://doi.org/10.1016/j.surfrep.2021.100531
DOI
38

Kühne, D.; Klappenberger, F.; Decker, R.; Schlickum, U.; Brune, H.; Klyatskaya, S.; Ruben, M.; Barth, J. V. Self-assembly of nanoporous chiral networks with varying symmetry from sexiphenyl-dicarbonitrile on Ag(111). J. Phys. Chem. C 2009, 113, 17851–17859.

39

Zhang, Y. Q.; Lin, T.; Cirera, B.; Hellwig, R.; Palma, C. A.; Chen, Z.; Ruben, M.; Barth, J. V.; Klappenberger, F. One-dimensionally disordered chiral sorting by racemic tiling in a surface-confined supramolecular assembly of achiral tectons. Angew. Chem., Int. Ed. 2017, 56, 7797–7802.

40

Tahara, K.; Noguchi, A.; Nakayama, R.; Ghijsens, E.; De Feyter, S.; Tobe, Y. Reversing the handedness of self-assembled porous molecular networks through the number of identical chiral centres. Angew. Chem., Int. Ed. 2019, 58, 7733–7738.

41

Ghijsens, E.; Cao, H.; Noguchi, A.; Ivasenko, O.; Fang, Y.; Tahara, K.; Tobe, Y.; De Feyter, S. Towards enantioselective adsorption in surface-confined nanoporous systems. Chem. Commun. 2015, 51, 4766–4769.

42

Fang, Y.; Tahara, K.; Ivasenko, O.; Tobe, Y.; De Feyter, S. Structural insights into the mechanism of chiral recognition and chirality transfer in host-guest assemblies at the liquid-solid interface. J. Phys. Chem. C 2018, 122, 8228–8235.

43

Lu, C.; Mo, Y. P.; Hong, Y.; Chen, T.; Yang, Z. Y.; Wan, L. J.; Wang, D. On-surface growth of single-layered homochiral 2D covalent organic frameworks by steric hindrance strategy. J. Am. Chem. Soc. 2020, 142, 14350–14356.

44

Feng, L.; Wang, T.; Tao, Z. J.; Huang, J. M; Li, G. H.; Xu, Q.; Tait, S. L.; Zhu, J. F. Supramolecular tessellations at surfaces by vertex design. ACS Nano 2019, 13, 10603–10611.

45

Vidal, F.; Delvigne, E.; Stepanow, S.; Lin, N.; Barth, J. V.; Kern, K. Chiral phase transition in two-dimensional supramolecular assemblies of prochiral molecules. J. Am. Chem. Soc. 2005, 127, 10101–10106.

46

Pivetta, M.; Pacchioni, G. E.; Fernandes, E.; Brune, H. Temperature-dependent self-assembly of NC-Ph5-CN molecules on Cu(111). J. Chem. Phys. 2015, 142, 101928.

47

Barbosa, L. A. M. M.; Sautet, P. Stability of chiral domains produced by adsorption of tartaric acid isomers on the Cu(110) surface: A periodic density functional theory study. J. Am. Chem. Soc. 2001, 123, 6639–6648.

48

Wang, T.; Lv, H. F.; Fan, Q. T.; Feng, L.; Wu, X. J.; Zhu, J. F. Highly selective synthesis of cis-nediynes on a Ag(111) surface. Angew. Chem., Int. Ed. 2017, 56, 4762–4766.

49

Jiang, L.; Zhang, B. D.; Médard, G.; Seitsonen, A. P.; Haag, F.; Allegretti, F.; Reichert, J.; Kuster, B.; Barth, J. V.; Papageorgiou, A. C. N-heterocyclic carbenes on close-packed coinage metal surfaces: Bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu. Chem. Sci. 2017, 8, 8301–8308.

50

Bombis, C.; Weigelt, S.; Knudsen, M. M.; Nørgaard, M.; Busse, C.; Lægsgaard, E.; Besenbacher, F.; Gothelf, K. V.; Linderoth, T. R. Steering organizational and conformational surface chirality by controlling molecular chemical functionality. ACS Nano 2010, 4, 297–311.

51

Fritton, M.; Duncan, D. A.; Deimel, P. S.; Rastgoo-Lahrood, A.; Allegretti, F.; Barth, J. V.; Heckl, W. M.; Björk, J.; Lackinger, M. The role of kinetics versus thermodynamics in surface-assisted ullmann coupling on gold and silver surfaces. J. Am. Chem. Soc. 2019, 141, 4824–4832.

52

Bieri, M.; Nguyen, M. T.; Gröning, O.; Cai, J. M.; Treier, M.; Aït-Mansour, K.; Ruffieux, P.; Pignedoli, C. A.; Passerone, D.; Kastler, M. et al. Two-dimensional polymer formation on surfaces: Insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 2010, 132, 16669–16676.

53

Rodríguez-Fernández, J.; Lauwaet, K.; Herranz, M. Á.; Martín, N.; Gallego, J. M.; Miranda, R.; Otero, R. Temperature-controlled metal/ligand stoichiometric ratio in Ag-TCNE coordination networks. J. Chem. Phys. 2015, 142, 101930.

54

Svane, K. L.; Baviloliaei, M. S.; Hammer, B.; Diekhöner, L. An extended chiral surface coordination network based on Ag7-clusters. J. Chem. Phys. 2018, 149, 164710.

55

Écija, D.; Seufert, K.; Heim, D.; Auwärter, W.; Aurisicchio, C.; Fabbro, C.; Bonifazi, D.; Barth, J. V. Hierarchic self-assembly of nanoporous chiral networks with conformationally flexible porphyrins. ACS Nano 2010, 4, 4936–4942.

56

Kühne, D.; Klappenberger, F.; Krenner, W.; Klyatskaya, S.; Ruben, M.; Barth, J. V. Rotational and constitutional dynamics of caged supramolecules. Proc. Natl. Acad. Sci. USA 2010, 107, 21332–21336.

57

Blüm, M. C.; Ćavar, E.; Pivetta, M.; Patthey, F.; Schneider, W. D. Conservation of chirality in a hierarchical supramolecular self-assembled structure with pentagonal symmetry. Angew. Chem., Int. Ed. 2005, 44, 5334–5337.

58

Dmitriev, A.; Spillmann, H.; Lingenfelder, M.; Lin, N.; Barth, J. V.; Kern, K. Design of extended surface-supported chiral metal-organic arrays comprising mononuclear iron centers. Langmuir 2004, 20, 4799–4801.

59

Xu, W.; Kelly, R. E.; Gersen, H.; Lægsgaard, E.; Stensgaard, I.; Kantorovich, L. N.; Besenbacher, F. Prochiral guanine adsorption on Au(111): An entropy-stabilized intermixed guanine-quartet chiral structure. Small 2009, 5, 1952–1956.

60

Judd, C. J.; Champness, N. R.; Saywell, A. An on-surface reaction confined within a porous molecular template. Chem.—Eur. J. 2018, 24, 56–61.

61

Tahara, K.; Kubo, Y.; Hashimoto, S.; Ishikawa, T.; Kaneko, H.; Brown, A.; Hirsch, B. E.; Feyter, S. D.; Tobe, Y. Porous self-assembled molecular networks as templates for chiral-position-controlled chemical functionalization of graphitic surfaces. J. Am. Chem. Soc. 2020, 142, 7699–7708.

62

Müller, K.; Enache, M.; Stöhr, M. Confinement properties of 2D porous molecular networks on metal surfaces. J. Phys. Condens. Mat. 2016, 28, 153003.

63

Pivetta, M.; Pacchioni, G. E.; Schlickum, U.; Barth, J. V.; Brune, H. Formation of Fe cluster superlattice in a metal-organic quantum-box network. Phys. Rev. Lett. 2013, 110, 086102.

64

Chen, M.; Feng, X. F.; Zhang, L.; Ju, H. X.; Xu, Q.; Zhu, J. F.; Gottfried, J. M.; Ibrahim, K.; Qian, H. J.; Wang, J. O. Direct synthesis of nickel(II) tetraphenylporphyrin and its interaction with a Au(111) surface: A comprehensive study. J. Phys. Chem. C 2010, 114, 9908–9916.

65

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

File
12274_2021_3876_MOESM1_ESM.pdf (659.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 July 2021
Revised: 20 August 2021
Accepted: 09 September 2021
Published: 25 September 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21773222, U1732272, and U1932214), the National Key R&D Program of China (Nos. 2017YFA0403402, 2017YFA0403403, and 2019YFA0405601), Users with Excellence Program of Hefei Science Center CAS (No. 2020HSC-UE004), and the DNL Cooperation Fund, CAS (No. DNL180201).

Return