Journal Home > Volume 15 , Issue 4

Metallic lithium is deemed as the “Holy Grail” anode in high-energy-density secondary batteries. Uncontrollable lithium dendrite growth and related issues originated from uneven concentration distribution of Li+ in the vicinity of the anode, however, induce severe safety concerns and poor cycling efficiency, dragging lithium metal anode out of practical application. Herein we address these issues by using cross-linked lithiophilic amino phosphonic acid resin as the effective host with the ion-transport-enhancement feature. Based on theoretical calculations and multiphysics simulation, it is found that this ion-transport-enhancement feature is capable of facilitating the self-concentration kinetics of Li+ and accelerating Li+ transfer at the electrolyte/electrode interface, leading to uniform bulk lithium deposition. Experimental results show that the proposed lithium-hosting resin decreases the irreversible lithium capacity and improves lithium utilization (with the Coulombic efficiency (CE) of 98.8% over 130 cycles). Our work demonstrates that inducing the self-concentrating distribution of Li+ at the interface can be an effective strategy for improving the interfacial ion concentration gradient and optimizing lithium deposition, which opens a new avenue for the practical development of next-generation lithium metal batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Modulating Sand’ s time by ion-transport-enhancement toward dendrite-free lithium metal anode

Show Author's information Yu YanChaozhu Shu( )Ruixin ZhengMinglu LiZhiqun RanMiao HeAnjun HuTing ZengHaoyang XuYing Zeng( )
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu 610059, China

Abstract

Metallic lithium is deemed as the “Holy Grail” anode in high-energy-density secondary batteries. Uncontrollable lithium dendrite growth and related issues originated from uneven concentration distribution of Li+ in the vicinity of the anode, however, induce severe safety concerns and poor cycling efficiency, dragging lithium metal anode out of practical application. Herein we address these issues by using cross-linked lithiophilic amino phosphonic acid resin as the effective host with the ion-transport-enhancement feature. Based on theoretical calculations and multiphysics simulation, it is found that this ion-transport-enhancement feature is capable of facilitating the self-concentration kinetics of Li+ and accelerating Li+ transfer at the electrolyte/electrode interface, leading to uniform bulk lithium deposition. Experimental results show that the proposed lithium-hosting resin decreases the irreversible lithium capacity and improves lithium utilization (with the Coulombic efficiency (CE) of 98.8% over 130 cycles). Our work demonstrates that inducing the self-concentrating distribution of Li+ at the interface can be an effective strategy for improving the interfacial ion concentration gradient and optimizing lithium deposition, which opens a new avenue for the practical development of next-generation lithium metal batteries.

Keywords: stability, lithium-oxygen batteries, electrode materials, lithiophilic resin, electrode structure

References(45)

1

Li, G. X.; Liu, Z.; Huang, Q. Q.; Gao, Y.; Regula, M.; Wang, D. W.; Chen, L. Q.; Wang, D. H. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 2018, 3, 1076–1083.

2

Li, C. F.; Liu, S. H.; Shi, C. G.; Liang, G. H.; Lu, Z. T.; Fu, R. W.; Wu, D. C. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat. Commun. 2019, 10, 1363.

3

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

4

Shu, C. Z.; Wang, J. Z.; Long, J. P.; Liu, H. K.; Dou, S. X. Understanding the reaction chemistry during charging in aprotic lithium-oxygen batteries: Existing problems and solutions. Adv. Mater. 2019, 31, 1804587.

5

Yao, Y. X.; Zhang, X. Q.; Li, B. Q.; Yan, C.; Chen, P. Y.; Huang, J. Q.; Zhang, Q. A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2020, 2, 379–388.

6

Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 2019, 11, 64–70.

7

Liang, Y. R.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W. C.; Huang, J. Q.; Yu, D. S.; Liu, Y. L.; Titirici, M. M.; Chueh, Y. L. et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32.

8

Yan, Y.; Shu, C. Z.; Zheng, R. X.; Li, M. L.; Ran, Z. Q.; He, M.; Ren, L. F.; Du, D. Y.; Zeng, Y. Long-cycling lithium-oxygen batteries enabled by tailoring Li nucleation and deposition via lithiophilic oxygen vacancy in Vo-TiO2/Ti3C2Tx composite anodes. J. Energy Chem. 2022, 65, 654–665.

9

Yan, J. H.; Liu, X. B.; Li, B. Y.; Yu, J. Y.; Ding, B. Mixed ionic and electronic conductor for Li-metal anode protection. Adv. Mater. 2018, 30, 1803156.

10

Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355–7367.

11

Han, Y. Y.; Liu, B.; Xiao, Z.; Zhang, W. K.; Wang, X. L.; Pan, G. X.; Xia. Y.; Xia, X. H.; Tu, J. P. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives. InfoMat 2021, 3, 155–174.

12

Xiao, J. How lithium dendrites form in liquid batteries. Science 2019, 366, 426–427.

13

Chen, X.; Hou, T. Z.; Li, B.; Yan, C.; Zhu, L.; Guan, C.; Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Mater. 2017, 8, 194–201.

14

Yu, Y.; Huang, G.; Du, J. Y.; Wang, J. Z.; Wang, Y.; Wu, Z. J.; Zhang, X. B. A renaissance of N, N-Dimethylacetamide-based electrolytes to promote the cycling stability of Li-O2 batteries. Energy Environ. Sci. 2020, 13, 3075–3081.

15

Zhao, Y. M.; Yue, F. S.; Li, S. C.; Zhang, Y.; Tian, Z. R.; Xu, Q.; Xin, S.; Guo, Y. G. Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries. InfoMat 2021, 3, 460–501.

16

Gireaud, L.; Grugeon, S.; Laruelle, S.; Yrieix, B.; Tarascon, J. M. Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochem. Commun. 2006, 8, 1639–1649.

17

Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

18

Zhu, M. Q.; Li, B.; Li, S. M.; Du, Z. G.; Gong, Y. J.; Yang, S. B. Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks. Adv. Energy Mater. 2018, 8, 1703505.

19

Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase endowing ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

20

Liu, S. H.; Huang, J. L.; Tang, Y. C.; Wu, D. C. Controllable preparation and functionalization strategies of novel polymer-based porous carbon materials. Acta Polym. Sin. 2021, 52, 679–686.

21

Zhang, W. D.; Zhang, S. Q.; Fan, L.; Gao, L. N.; Kong, X. Q.; Li, S. Y.; Li, J.; Hong, X.; Lu, Y. Y. Tuning the LUMO energy of an organic interphase to stabilize lithium metal batteries. ACS Energy Lett. 2019, 4, 644–650.

22

Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019, 5, 74–96.

23

Tu, Z. Y.; Nath, P.; Lu, Y. Y.; Tikekar, M. D.; Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 2015, 48, 2947–2956.

24

Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074.

25

Li, G. X.; Liu, Z.; Wang, D. W.; He, X.; Liu, S.; Gao, Y.; AlZahrani, A.; Kim, S. H.; Chen, L. Q.; Wang, D. H. Electrokinetic phenomena enhanced lithium-ion transport in leaky film for stable lithium metal anodes. Adv. Energy Mater. 2019, 9, 1900704.

26

Sand, H. J. S. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Proc. Phys. Soc. London 1899, 17, 496–534.

27

Ye, H.; Xin, S.; Yin, Y. X.; Li, J. Y.; Guo, Y. G.; Wan, L. J. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 2017, 139, 5916–5922.

28

Zuo, T. T.; Wu, X. W.; Yang, C. P.; Yin, Y. X.; Ye, H.; Li, N. W.; Guo, Y. G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 2017, 29, 1700389.

29

Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 1999, 81–82, 925–929.

30

Guan, X. Z.; Wang, A. X.; Liu, S.; Li, G. J.; Liang, F.; Yang, Y. W.; Liu, X. J.; Luo, J. Y. Controlling nucleation in lithium metal anodes. Small 2018, 14, 1801423.

31

Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P. C.; Chu, S.; Cui, Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910–2916.

32

Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

33

Li, S. J.; Wang, R. H.; Yang, X.; Wu, J.; Meng, H. Y.; Xu, H. L.; Ren, Z. Y. Binary metal phosphides with MoP and FeP embedded in P, N-Doped graphitic carbon as electrocatalysts for oxygen reduction. ACS Sustainable Chem. Eng. 2019, 7, 11872–11884.

34

Delgado, A. V.; González-Caballero, F.; Hunter, R. J.; Koopal, L. K.; Lyklema, J. Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 2007, 309, 194–224.

35

Chen, W.; Hu, Y.; Lv, W. Q.; Lei, T. Y.; Wang, X. F.; Li, Z. H.; Zhang, M.; Huang, J. W.; Du, X. C.; Yan, Y. C. et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 2019, 10, 4973.

36

Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

37

Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139.

38

Lopez, J.; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. N. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 2018, 140, 11735–11744.

39

Zhang, W. D.; Wu, Q.; Huang, J. X.; Fan, L.; Shen, Z. Y.; He, Y.; Feng, Q.; Zhu, G. N.; Lu, Y. Y. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, 2001740.

40

Cheng, X. B.; Zhao, M. Q.; Chen, C.; Pentecost, A.; Maleski, K.; Mathis, T.; Zhang, X. Q.; Zhang, Q.; Jiang, J. J.; Gogotsi, Y. Nanodiamonds suppress the growth of lithium dendrites. Nat. Commun. 2017, 8, 336.

41

Park, K.; Goodenough, J. B. Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N. Adv. Energy Mater. 2017, 7, 1700732.

42

Li, H.; Chao, D. L.; Chen, B.; Chen, X.; Chuah, C.; Tang, Y. H.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Revealing principles for design of lean-electrolyte lithium metal anode via in situ spectroscopy. J. Am. Chem. Soc. 2020, 142, 2012–2022.

43

Xu, Y. F.; Gao, L. N.; Shen, L.; Liu, Q. Q.; Zhu, Y. Y.; Liu, Q.; Li, L. S.; Kong, X. Q.; Lu, Y. F.; Wu, H. B. Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 2020, 3, 1685–1700.

44

Qin, L. G.; Xu, H.; Wang, D.; Zhu, J. F.; Chen, J.; Zhang, W.; Zhang, P. G.; Zhang, Y.; Tian, W. B.; Sun, M. Z. Fabrication of lithiophilic copper foam with interfacial modulation toward high-rate lithium metal anodes. ACS Appl. Mater. Interfaces 2018, 10, 27764–27770.

45

Aurbach, D.; Weissman, I.; Zaban, A.; Chusid, O. Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts. Electrochim. Acta 1994, 39, 51–71.

File
12274_2021_3872_MOESM1_ESM.pdf (848.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2021
Revised: 28 August 2021
Accepted: 06 September 2021
Published: 30 September 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21905033) and the Science and Technology Department of Sichuan Province (No. 2019YJ0503). The support from the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (No. 2020P4FZG02A) is also appreciated.

Return