Journal Home > Volume 15 , Issue 2

The prediction of two-dimensional molecular self-assembly structures has always been a problem to be solved. The molecules with meta-dicarboxyl groups can self-assemble into a specific hexagonal cavity, which has an important influence on the prediction of molecular self-assembly structures and the application of functional molecules with meta-dicarboxyl groups. Two kinds of molecules with four pairs of meta-dicarboxyl groups, 1,3,6,8-tetrakis(3,5-isophthalic acid)pyrene (H8TIAPy) and 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1’-biphenyl]-3,5-dicarboxylic acid)) (H8ETTB) molecules were chosen to observe the self-assembly behavior at the heptanoic acid/highly oriented pyrolytic graphite (HA/HOPG) interface. H8TIAPy molecules self-assembled into well-ordered quadrilateral structures and could be regulated into kagomé networks with hexagonal pores by coronene (COR) molecules. H8ETTB molecules self-assembled into lamellar structures and transformed into acid-COR-acid-COR co-assembled structures at low concentration of COR solution and acid-COR dimer-acid-COR dimer co-assembled structures at high concentration of COR solution. The reason that H8ETTB molecules could not be regulated into hexagonal porous architecture was attributed to the steric hindrance by the similar length and width of H8ETTB molecules. The H8ETTB templates had stronger adsorption for COR than that of hexaphenylbenzene (HPB), regardless of the order of molecular introduction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The effect of multiple pairs of meta-dicarboxyl groups on molecular self-assembly and the selective adsorption of coronene by hydrogen bonding and van der Waals forces

Show Author's information Jianqiao Li1,2,3Wendi Luo1Siqi Zhang1,2Chunyu Ma1,2Xunwen Xiao3( )Wubiao Duan2( )Qingdao Zeng1( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China

Abstract

The prediction of two-dimensional molecular self-assembly structures has always been a problem to be solved. The molecules with meta-dicarboxyl groups can self-assemble into a specific hexagonal cavity, which has an important influence on the prediction of molecular self-assembly structures and the application of functional molecules with meta-dicarboxyl groups. Two kinds of molecules with four pairs of meta-dicarboxyl groups, 1,3,6,8-tetrakis(3,5-isophthalic acid)pyrene (H8TIAPy) and 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1’-biphenyl]-3,5-dicarboxylic acid)) (H8ETTB) molecules were chosen to observe the self-assembly behavior at the heptanoic acid/highly oriented pyrolytic graphite (HA/HOPG) interface. H8TIAPy molecules self-assembled into well-ordered quadrilateral structures and could be regulated into kagomé networks with hexagonal pores by coronene (COR) molecules. H8ETTB molecules self-assembled into lamellar structures and transformed into acid-COR-acid-COR co-assembled structures at low concentration of COR solution and acid-COR dimer-acid-COR dimer co-assembled structures at high concentration of COR solution. The reason that H8ETTB molecules could not be regulated into hexagonal porous architecture was attributed to the steric hindrance by the similar length and width of H8ETTB molecules. The H8ETTB templates had stronger adsorption for COR than that of hexaphenylbenzene (HPB), regardless of the order of molecular introduction.

Keywords: self-assembly, selective adsorption, steric hindrance, meta-dicarboxyl groups, hexagonal cavity

References(36)

1

Feng, Z. J.; Kladnik, G.; Comelli, G.; Dri, C.; Cossaro, A. growth of regular nanometric molecular arrays on a functional 2D template based on a chemical guest–host approach. Nanoscale 2018, 10, 2067–2072.

2

Silly, F. Concentration-dependent two-dimensional halogen-bonded self-assembly of 1,3,5-tris(4-iodophenyl)benzene molecules at the solid–liquid interface. J. Phys. Chem. C 2017, 121, 10413–10418.

3

Silly, F. Elucidating the intramolecular contrast in the STM images of 2,4,6-tris(4’,4’’,4’’’-trimethylphenyl)-1,3,5-triazine molecules recorded at room-temperature and at the liquid–solid interface. RSC Adv. 2020, 10, 5742–5746.

4

He, J.; Fang, C.; Shelp, R. A.; Zimmt, M. B. Tracking invisible transformations of physisorbed monolayers: LDI-TOF and MALDI-TOF mass spectrometry as complements to STM imaging. Langmuir 2017, 33, 459–467.

5

Wang, Y.; Tan, X. P.; Pang, P.; Li, B.; Miao, X. R.; Cheng, X. H.; Deng, W. L. Template-assisted 2D self-assembled chiral kagome network for selective adsorption of coronene. Chem. Commun. 2020, 56, 13991–13994.

6

Dai, H. L.; Yi, W. J.; Deng, K.; Wang, H.; Zeng, Q. D. Formation of coronene clusters in concentration and temperature controlled two-dimensional porous network. ACS Appl. Mater. Interfaces 2016, 8, 21095–21100.

7

Xiao, Y. C.; Tao, J. Y.; Peng, X.; Song, Y. T.; Lei, P.; Xu, H. J.; Xiao, X. W.; Tu, B.; Zeng, Q. D. Two-dimensional molecular network built from hierarchy self-assembly of perylene bisimide derivatives. ACS Appl. Mater. Interfaces 2021, 13, 17129–17138.

8

Guo, C.; Xue, J. D.; Cheng, L. X.; Liu, R. C.; Kang, S. Z.; Zeng, Q. D.; Li, M. Two-dimensional self-assembly of diacetylenic acid derivatives and their light-induced polymerization on HOPG surfaces. Phys. Chem. Chem. Phys. 2017, 19, 16213–16218.

9

Kikkawa, Y.; Tsuzuki, S.; Kashiwada, A.; Hiratani, K. Self-assembled 2D patterns of structural isomers in isobutenyl compounds revealed by STM at solid/liquid interface. Colloids Surf A: Physicochem. Eng. Aspects 2018, 537, 580–590.

10

Kim, S.; Castillo, H. D.; Lee, M.; Mortensen, R. D.; Tait, S. L.; Lee, D. From foldable open chains to shape-persistent macrocycles: Synthesis, impact on 2D ordering, and stimulated self-assembly. J. Am. Chem. Soc. 2018, 140, 4726–4735.

11

Reynaerts, R.; Minoia, A.; Gali, S. M.; Daukiya, L.; Van Velthoven, N.; De Vos, D.; Lazzaroni, R.; Mali, K. S.; De Feyter, S. Coplanar versus noncoplanar carboxyl groups: The influence of sterically enforced noncoplanarity on the 2D mixing behavior of benzene tricarboxylic acids. J. Phys. Chem. C 2020, 124, 24874–24882.

12

Martsinovich, N.; Troisi, A. Modeling the self-assembly of benzenedicarboxylic acids using Monte Carlo and molecular dynamics simulations. J. Phys. Chem. C 2010, 114, 4376–4388.

13

Peng, X.; Xiao, Y. C.; Mu, M.; Deng, K.; Tian, W.; Xiao, X. W.; Li, X. K.; Zeng, Q. D. Programmable binary crystallization behaviors assisted by hydrogen bond on HOPG surface. Appl. Surf. Sci. 2021, 565, 150529.

14

Li, J. Q.; Liu, B.; Duan, W. B.; Tu, B.; Zeng, Q. D. The Self-Assembly of a low symmetric aromatic carboxylic acid with meta-carboxyl groups regulated by pyridine derivatives. Surf. Sci. 2020, 700, 121654.

15

Mazur, U.; Hipps, K. W. Kinetic and thermodynamic processes of organic species at the solution-solid interface: The view through an STM. Chem. Commun. 2015, 51, 4737–4749.

16

Mairena, A.; Parschau, M.; Seibel, J.; Wienke, M.; Rentsch, D.; Terfort, A.; Ernst, K. H. Diastereoselective self-assembly of bisheptahelicene on Cu(111). Chem. Commun. 2018, 54, 8757–8760.

17

Hu, Y.; Miao, K.; Zha, B.; Xu, L.; Miao, X. R.; Deng, W. L. STM investigation of structural isomers: Alkyl chain position induced self-assembly at the liquid/solid interface. Phys. Chem. Chem. Phys. 2016, 18, 624–634.

18

Ciesielski, A.; Szabelski, P. J.; Rżysko, W.; Cadeddu, A.; Cook, T. R.; Stang, P. J.; Samorì, P. Concentration-dependent supramolecular engineering of hydrogen-bonded nanostructures at surfaces: Predicting self-assembly in 2D. J. Am. Chem. Soc. 2013, 135, 6942–6950.

19

Garah, M. E.; Dianat, A.; Cadeddu, A.; Gutierrez, R.; Cecchini, M.; Cook, T. R.; Ciesielski, A.; Stang, P. J.; Cuniberti, G.; Samori P. Atomically precise prediction of 2D self-assembly of weakly bonded nanostructures: STM insight into concentration-dependent architectures. Small 2016, 12, 343–350.

20

He, Y. B.; Zhou, W.; Krishna, R.; Chen, B. L. Microporous metal–organic frameworks for storage and separation of small hydrocarbons. Chem. Commun. 2012, 48, 11813–11831.

21

Li, B. Y.; Zhang, Z. J.; Li, Y.; Yao, K. X.; Zhu, Y. H.; Deng, Z. Y.; Yang, F.; Zhou, X. J.; Li, G. H.; Wu, H. H. et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal–organic framework. Angew. Chem., Int. Ed. 2012, 51, 1412–1415.

22

Lin, R. B.; Xiang, S. C.; Li, B.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Reticular chemistry of multifunctional metal–organic framework materials. Isr. J. Chem. 2018, 58, 949–961.

23

MacLeod, J. M.; Chaouch, Z. B.; Perepichka, D. F.; Rosei, F. Two-dimensional self-assembly of a symmetry-reduced tricarboxylic acid. Langmuir 2013, 29, 7318–7324.

24

Steeno, R.; Minoia, A.; Gimenez-Lopez, M. C.; Blunt, M. O.; Champness, N. R.; Lazzaroni, R.; Mali, K. S.; De Feyter, S. Molecular dopant determines the structure of a physisorbed self-assembled molecular network. Chem. Commun. 2021, 57, 1454–1457.

25

Li, M.; Deng, K.; Lei, S. B.; Yang, Y. L.; Wang, T. S.; Shen, Y. T.; Wang, C. R.; Zeng, Q. D.; Wang, C. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid–solid interface. Angew. Chem., Int. Ed. 2008, 47, 6717–6721.

26

Shen, Y. T.; Li, M.; Guo, Y. Y.; Deng, K.; Zeng, Q. D.; Wang, C. The site-selective molecular recognition of ternary architectures by using supramolecular nanoporous networks at a liquid–solid interface. Chem. Asian J. 2010, 5, 787–790.

27

Blunt, M.; Lin, X.; Gimenez-Lopez, M. D. C.; Schröder, M.; Champness, N. R.; Beton, P. H. Directing two-dimensional molecular crystallization using guest templates. Chem. Commun. 2008, 2304–2306.

28

Wang, J.; Wang, L. M.; Lu, C.; Yan, H. J.; Wang, S. X.; Wang, D. Formation of multicomponent 2D assemblies of C2v-symmetric terphenyl tetracarboxylic acid at the solid/liquid interface: Recognition, selection, and transformation. RSC Adv. 2019, 9, 11659–11663.

29

Lackinger, M.; Griessl, S.; Heckl, W. M.; Hietschold, M.; Flynn, G. W. Self-assembly of trimesic acid at the liquid–solid interface—A study of solvent-induced polymorphism. Langmuir 2005, 21, 4984–4988.

30

Li, J. Q.; Tu, B.; Li, X. K.; Ma, C. Y.; Chen, C.; Duan, W. B.; Xiao, X. W.; Zeng, Q. D. Self-assembled flower structures formed by C3-symmetric aromatic carboxylic acids with meta-carboxyl groups. Chem. Commun. 2019, 55, 11599–11602.

31

Zhao, N.; Sun, F. X.; Zhang, S. X.; He, H. M.; Liu, J.; Li, Q.; Zhu, G. S. Deprotonation-triggered stokes shift fluorescence of an unexpected basic-stable metal–organic framework. Inorg. Chem. 2015, 54, 65–68.

32

Guo, X. L.; Zhu, N. S.; Wang, S. P.; Li, G. H.; Bai, F. Q.; Li, Y.; Han, Y. H.; Zou, B.; Chen, X. B.; Shi, Z. et al. Stimuli-responsive luminescent properties of tetraphenylethene-based strontium and cobalt metal–organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 19716–19721.

33

Peng, X.; Geng, Y. F.; Zhang, M.; Cheng, F. L.; Cheng, L. X.; Deng, K.; Zeng, Q. D. Guest selectivity in the supramolecular host networks fabricated by van der Waals force and hydrogen bond. Nano Res. 2019, 12, 537–542.

34

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

35

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

36

Chang, S. Q.; Liu, R. C.; Wang, L. C.; Li, M.; Deng, K.; Zheng, Q. Y.; Zeng, Q. D. Formation of ordered coronene clusters in template utilizing the structural transformation of hexaphenylbenzene derivative networks on graphite surface. ACS Nano 2016, 10, 342–348.

File
12274_2021_3871_MOESM1_ESM.pdf (405.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 July 2021
Revised: 01 September 2021
Accepted: 03 September 2021
Published: 11 October 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21773041, and 21972031), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), the Natural Science Foundation of Zhejiang Province (No. Y20B020032) and China Scholarship Council (No. 202007090155).

Return