AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Exploring ratiometric endolysosomal pH nanosensors with hydrophobic indicators responding at the nanoscale interface and multiple fluorescence resonance energy transfers

Qinghan Chen1,2Jingying Zhai3Jing Li1,2Yifu Wang2Xiaojiang Xie2( )
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
Show Author Information

Graphical Abstract

Tuneable endolysosomal pH nanosensors are presented featuring the unique interfacial response mechanism and triple Förster resonance energy transfer.

Abstract

Compared with conventional water-soluble fluorescence probes, pH-sensitive fluorescent nanosensors based on hydrophobic indicators remain largely unexplored. We report here the unique pH response of the nanosensors with a hydrophobic indicator (Ch3, a Nile Blue derivative) in polymeric nanoparticles (NPs). At the aqueous-organic interface of the NPs, spectral overlap and dye accumulation caused significant Förster resonance energy transfer (FRET) not only between the protonated and deprotonated Ch3 (hetero-FRET), but also between the protonated and deprotonated Ch3 themselves (homo-FRET). The pH response was simulated according to an interfacial response mechanism and the dynamic range was found to depend on the size of the NPs and dye distribution (Kp). Therefore, adjusting the size of the NPs and the local dye concentration gave rise to a series of dynamic sensing ranges with apparent pKa values from 2.7 to 9.6 based on a single indicator. The nanosensors were successfully delivered to HeLa cells to monitor subcellular pH values in the endosomes and lysosomes. Based on cellular calibrations, the average pH in the organelles were determined to be ca. 4.7. Moreover, the pH neutralization process during lysosome membrane permeabilization (LMP) induced by hydrogen peroxide stimulation was also successfully visualized with the nanosensors.

Electronic Supplementary Material

Download File(s)
12274_2021_3870_MOESM1_ESM.pdf (485.7 KB)

References

1

Saftig, P.; Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009, 10, 623–635.

2

Scott, C. C.; Gruenberg, J. Ion flux and the function of endosomes and lysosomes: pH is just the start: The flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. Bioessays 2011, 33, 103–110.

3

Flinck, M.; Kramer, S. H.; Pedersen, S. F. Roles of pH in control of cell proliferation. Acta Physiol. 2018, 223, e13068.

4

Kurkdjian, A.; Guern, J. Intracellular pH: Measurement and Importance in cell activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 271–303.

5

Feng, Z. Z.; Ma, Y. Y.; Li, B. J.; He, L. L.; Wang, Q.; Huang, J.; Liu, J. B.; Yang, X. H.; Wang, K. M. Mitochondria targeted self-assembled ratiometric fluorescent nanoprobes for pH imaging in living cells. Anal. Methods 2019, 11, 2097–2104.

6

Johnson, D. E.; Ostrowski, P.; Jaumouillé, V.; Grinstein, S. The position of lysosomes within the cell determines their luminal pH. J. Cell Biol. 2016, 212, 677–692.

7

Chan, K. W. Y.; Liu, G. S.; Song, X. L.; Kim, H.; Yu, T.; Arifin, D. R.; Gilad, A. A.; Hanes, J.; Walczak, P.; Van Zijl, P. C. M. et al. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nat. Mater. 2013, 12, 268–275.

8

Orte, A.; Alvarez-Pez, J. M.; Ruedas-Rama, M. J. Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. ACS Nano 2013, 7, 6387–6395.

9

Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J. Phys. Chem. C:Nanomater. Interfaces 2010, 114, 7421–7426.

10

Wang, X. D.; Stolwijk, J. A.; Lang, T.; Sperber, M.; Meier, R. J.; Wegener, J.; Wolfbeis, O. S. Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J. Am. Chem. Soc. 2012, 134, 17011–17014.

11

Zheng, X. S.; Zong, C.; Wang, X.; Ren, B. Cell-penetrating peptide conjugated SERS nanosensor for in situ intracellular pH imaging of single living cells during cell cycle. Anal. Chem. 2019, 91, 8383–8389.

12

Zhao, J. C.; Stenzel, M. H. Entry of nanoparticles into cells: The importance of nanoparticle properties. Polym. Chem. 2018, 9, 259–272.

13

Howes, P. D.; Chandrawati, R.; Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 1247390.

14

Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244.

15

Sigaeva, A.; Ong, Y.; Damle, V. G.; Morita, A.; Van Der Laan, K. J.; Schirhagl, R. Optical detection of intracellular quantities using nanoscale technologies. Acc. Chem. Res. 2019, 52, 1739–1749.

16

Schäferling, M. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 378–413.

17

Benjaminsen, R. V.; Sun, H. H.; Henriksen, J. R.; Christensen, N. M.; Almdal, K.; Andresen, T. L. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS Nano 2011, 5, 5864–5873.

18

Ding, Z. X.; Liu, G. H.; Hu, J. M. Ratiometric fluorescent mapping of pH and glutathione dictates intracellular transport pathways of micellar nanoparticles. Biomacromolecules 2020, 21, 3436–3446.

19

Sun, H. H.; Almdal, K.; Andresen, T. L. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors. Chem. Commun. 2011, 47, 5268–5270.

20

Carrillo-Carrion, C.; Parak, W. J. Multiplexed fluorophore-nanoparticle hybrids for extending the range of pH measurements. Small Methods 2017, 1, 1700153.

21

Pan, W.; Wang, H. H.; Yang, L. M.; Yu, Z. Z.; Li, N.; Tang, B. Ratiometric fluorescence nanoprobes for subcellular pH imaging with a single-wavelength excitation in living cells. Anal. Chem. 2016, 88, 6743–6748.

22

Shi, W.; Li, X. H.; Ma, H. M. Fluorescent probes and nanoparticles for intracellular sensing of pH values. Methods Appl. Fluoresc. 2014, 2, 042001.

23

Clark, H. A.; Hoyer, M.; Philbert, M. A.; Kopelman, R. Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal. Chem. 1999, 71, 4831–4836.

24

Borisov, S. M.; Mayr, T.; Klimant, I. Poly(styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal. Chem. 2008, 80, 573–582.

25

Deng, L.; Zhai, J. Y.; Du, X. F.; Xie, X. J. Ionophore-based ion-selective nanospheres based on monomer-dimer conversion in the near-infrared region. ACS Sens. 2021, 6, 1279–1285.

26

Guo, C.; Zhai, J. Y.; Wang, Y. F.; Yang, W.; Xie, X. J. Wash-free detection of nucleic acids with photoswitch-mediated fluorescence resonance energy transfer against optical background interference. Anal. Chem. 2021, 93, 8128–8133.

27

Dalfen, I.; Dmitriev, R. I.; Holst, G.; Klimant, I.; Borisov, S. M. Background-free fluorescence-decay-time sensing and imaging of pH with highly photostable diazaoxotriangulenium Dyes. Anal. Chem. 2019, 91, 808–816.

28

Salim, M. M.; Owens, E. A.; Gao, T. L.; Lee, J. H.; Hyun, H.; Choi, H. S.; Henary, M. Hydroxylated near-infrared BODIPY fluorophores as intracellular pH sensors. Analyst 2014, 139, 4862–4873.

29

Borisov, S. M.; Herrod, D. L.; Klimant, I. Fluorescent poly(styrene-block-vinylpyrrolidone) nanobeads for optical sensing of pH. Sens. Actuators B:Chem. 2009, 139, 52–58.

30

Cao, L. X.; Li, X. Y.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q. A novel nanogel-based fluorescent probe for ratiometric detection of intracellular pH values. Chem. Commun. 2014, 50, 8787–8790.

31

Shamsipur, M.; Barati, A.; Nematifar, Z. Fluorescent pH nanosensors: Design strategies and applications. J. Photoch. Photobio. C:Photochem. Rev. 2019, 39, 76–141.

32

Frankær, C. G.; Rosenberg, M.; Santella, M.; Hussain, K. J.; Laursen, B. W.; Sørensen, T. J. Tuning the pKa of a pH responsive fluorophore and the consequences for calibration of optical sensors based on a single fluorophore but multiple receptors. ACS Sens. 2019, 4, 764–773.

33

Rosenberg, M.; Junker, A. K. R.; Sørensen, T. J.; Laursen, B. W. Fluorescence pH probes based on photoinduced electron transfer quenching of long fluorescence lifetime triangulenium dyes. ChemPhotoChem 2019, 3, 233–242.

34

Xie, X. J.; Bakker, E. Ion selective optodes: From the bulk to the nanoscale. Anal. Bioanal. Chem. 2015, 407, 3899–3910.

35

Du, X. F.; Xie, X. J. Ion-selective optodes: Alternative approaches for simplified fabrication and signaling. Sens. Actuat. B:Chem. 2021, 335, 129368.

36

Bakker, E.; Bühlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083–3132.

37

Zhang, J. T.; Yang, M.; Li, C.; Dorh, N.; Xie, F.; Luo, F. T.; Tiwari, A.; Liu, H. Y. Near-infrared fluorescent probes based on piperazine-functionalized BODIPY dyes for sensitive detection of lysosomal pH. J. Mater. Chem. B 2015, 3, 2173–2184.

38

Yang, M. Y.; Song, Y. Q.; Zhang, M.; Lin, S. X.; Hao, Z. Y.; Liang, Y.; Zhang, D. M.; Chen, P. R. Converting a solvatochromic fluorophore into a protein-based pH indicator for extreme acidity. Angew. Chem. 2012, 124, 7794–7799.

39

Chin, M. Y.; Patwardhan, A. R.; Ang, K. H.; Wang, A. L.; Alquezar, C.; Welch, M.; Nguyen, P. T.; Grabe, M.; Molofsky, A. V.; Arkin, M. R. et al. Genetically encoded, pH-sensitive mTFP1 biosensor for probing lysosomal pH. ACS Sens. 2021, 6, 2168–2180.

40

Du, X. F.; Wang, R. J.; Zhai, J. Y.; Li, X. A.; Xie, X. J. Ionophore-based ion-selective nanosensors from brush block copolymer nanodots. ACS Appl. Nano Mater. 2020, 3, 782–788.

41

Chen, Q. H.; Li, X. A.; Wang, R. J.; Zeng, F. X.; Zhai, J. Y.; Xie, X. J. Rapid equilibrated colorimetric detection of protamine and heparin: Recognition at the nanoscale liquid-liquid interface. Anal. Chem. 2019, 91, 10390–10394.

42

Oh, N.; Park, J. H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine 2014, 9 Suppl 1, 51–63.

43

Iversen, T. G.; Skotland, T.; Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011, 6, 176–185.

44

Li, J.; Zhai, J. Y.; Wang, Y. F.; Yang, W.; Xie, X. J. Dual functional luminescent nanoprobes for monitoring oxygen and chloride concentration changes in cells. Chem. Commun. 2020, 56, 14980–14983.

45

Boya, P.; Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 2008, 27, 6434–6451.

46

Johansson, A. C.; Appelqvist, H.; Nilsson, C.; Kågedal, K.; Roberg, K.; Öllinger, K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 2010, 15, 527–540.

47

Yoshimori, T.; Yamamoto, A.; Moriyama, Y.; Futai, M.; Tashiro, Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 1991, 266, 17707–17712.

Nano Research
Pages 3471-3478
Cite this article:
Chen Q, Zhai J, Li J, et al. Exploring ratiometric endolysosomal pH nanosensors with hydrophobic indicators responding at the nanoscale interface and multiple fluorescence resonance energy transfers. Nano Research, 2022, 15(4): 3471-3478. https://doi.org/10.1007/s12274-021-3870-5
Topics:

833

Views

17

Crossref

18

Web of Science

17

Scopus

1

CSCD

Altmetrics

Received: 18 July 2021
Revised: 31 August 2021
Accepted: 04 September 2021
Published: 27 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return