AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Safety evaluation of nanodiamond-doxorubicin complexes in a Naïve Beagle canine model using hematologic, histological, and urine analysis

Liping Wang1,§Wenqiong Su1,§Khan Zara Ahmad1,§Xin Wang1,§Ting Zhang1Youyi Yu1Edward Kai-Hua Chow2,3,4,5,6( )Dean Ho3,4,5,6( )Xianting Ding1( )
State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
The N.1 Institute for Health (N.1), National University of Singapore, Singapore 117456, Singapore
The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore 117456, Singapore
Department of Pharmacology, National University of Singapore, Singapore 117597, Singapore
Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore

§ Liping Wang, Wenqiong Su, Khan Zara Ahmad, and Xin Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Male and female, intravenous injection and hepatic portal vain injection of nanodiamond (ND), doxorubicin (DOX), ND-based DOX (NDX), were comprehensively evaluated for their pathology, blood testing and urinalysis. 1, 2, and 3 in dotted circles indicated the synthesis process of NDX. A, B, and C in dotted circles indicated administration of DOX, ND, and NDX injection, respectively. A total of five groups of Naïve Beagle dogs were examined.

Abstract

While doxorubicin (DOX) is one of the most common chemotherapeutic drugs for treating cancer, use of DOX must be managed carefully due to dose-related toxicity. Nanodiamond (ND) drug delivery system conjugated with DOX (NDX) has been reported to enhance treatment efficacy and attenuate toxicity in murine cancer models. In addition, extensive biocompatibility studies indicate that NDs seem to be well tolerated in non-human primates. Before the clinical translation of NDX, it is necessary to verify the safety of ND in large mammals. Studies of nanomedicine drug safety for large animal are not commonly reported, and this work represents a key milestone in bridging earlier advances towards clinical assessment. Herein, NDs’ safety as a drug-delivery platform was evaluated in Naïve Beagle dogs. The study is performed with DOX, ND, and NDX in a dual-gender animal model using intravenous (IV) injection and hepatic portal vein (HPV) injection methods. The dogs are monitored for their health phenotype changes in continuous 5 days. Blood and urine obtained are for clinical pathology research. The results indicate that ND drug delivery platform significantly relieves DOX toxicity for Naïve Beagle dog model. This study provides guidance for the pre-clinical safety assessment of NDX therapy at large animal level.

Electronic Supplementary Material

Download File(s)
12274_2021_3867_MOESM1_ESM.pdf (313.2 KB)

References

1

Vasconcelos, I. B.; da Silva, T. G.; Militão, G. C. G.; Soares, T. A.; Rodrigues, N. M.; Rodrigues M. O.; da Costa, N. B. Jr.; Freire, R. O.; Junior, S. A. Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Adv. 2012, 2, 9437–9442.

2

Xi, G. F.; Robinson, E.; Mania-Farnell, B.; Vanin, E. F.; Shim, K. W.; Takao, T.; Allender, E. V.; Mayanil, C. S.; Soares, M. B.; Ho, D. et al. Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 381–391.

3

Kunieda, K.; Seki, T.; Nakatani, S.; Wakabayashi, M.; Shiro, T.; Inoue, K.; Sougawa, M.; Kimura, R.; Harada, K. Implantation treatment method of slow release anticancer doxorubicin containing hydroxyapatite (DOX-HAP) complex. A basic study of a new treatment for hepatic cancer. Br. J. Cancer 1993, 67, 668–673.

4

Li, Y.; Tong, Y.; Cao, R.; Tian, Z.; Yang, B.; Yang, P. In vivo enhancement of anticancer therapy using bare or chemotherapeutic drug-bearing nanodiamond particles. Int. J. Nanomed. 2014, 9, 1065–1082.

5

Chlebowski, R. T. Adriamycin (doxorubicin) cardiotoxicity: A review. West J. Med. 1979, 131, 364–368.

6

Salaam, A. D.; Hwang, P.; McIntosh, R.; Green, H. N.; Jun, H. W.; Dean, D. Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer. Beilstein J. Nanotechnol. 2014, 5, 937–945.

7

Zhang, X. Y.; Hu, W. B.; Li, J.; Tao, L.; Wei, Y. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res. 2012, 1, 62–68.

8

Loh, K. P.; Ho, D.; Chiu, G. N. C.; Leong, D. T.; Pastorin, G.; Chow, E. K. H. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv. Mater 2018, 30, 1802368.

9

Shimkunas, R. A.; Robinson, E.; Lam, R.; Lu, S.; Xu, X. Y.; Zhang, X. Q.; Huang, H. J.; Osawa, E.; Ho, D. Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 2009, 30, 5720–5728.

10

Larsson, K.; Tian, Y. Effect of surface termination on the reactivity of nano-sized diamond particle surfaces for bio applications. Carbon 2018, 134, 244–254.

11

Chow, E. K.; Zhang, X. Q.; Chen, M.; Lam, R.; Robinson, E.; Huang, H. J.; Schaffer, D.; Osawa, E.; Goga, A.; Ho, D. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 2011, 3, 73ra21.

12

Wang, P.; Su, W. Q.; Ding, X. T. Control of nanodiamond-doxorubicin drug loading and elution through optimized compositions and release environments. Diam. Relat. Mater. 2018, 88, 43–50.

13

Mochalin, V. N.; Pentecost, A.; Li, X. M.; Neitzel, I.; Nelson, M.; Wei, C. Y.; He, T.; Guo, F.; Gogotsi, Y. Adsorption of drugs on nanodiamond: Toward development of a drug delivery platform. Mol. Pharm. 2013, 10, 3728–3735.

14

Li, X. X.; Shao, J. Q.; Qin, Y.; Shao, C.; Zheng, T. T.; Ye, L. TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. J. Mater. Chem. 2011, 21, 7966–7973.

15

Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23.

16

Zou, Q.; Wang, M. Z.; Li, Y. G. Analysis of the nanodiamond particle fabricated by detonation. J. Exp. Nanosci. 2010, 5, 319–328.

17

Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G. Enrichment of nanodiamond surfaces with carboxyl groups for doxorubicin loading and release. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 172, 012066.

18

Luo, J. J.; Liu, Y. F.; Wei, H.; Wang, B. L.; Wu, K. H.; Zhang, B. S.; Su, D. S. A green and economical vapor-assisted ozone treatment process for surface functionalization of carbon nanotubes. Green Chem. 2017, 19, 1052–1062.

19

Zhang, X. Q.; Lam, R.; Xu, X. Y.; Chow, E. K.; Kim, H. J.; Ho, D. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv. Mater 2011, 23, 4770–4775.

20

Vaijayanthimala, V.; Lee, D. K.; Kim, S. V.; Yen, A.; Tsai, N.; Ho, D.; Chang, H. C.; Shenderova, O. Nanodiamond-mediated drug delivery and imaging: Challenges and opportunities. Expert Opin. Drug Del. 2015, 12, 735–749.

21

Moore, L.; Chow, E. K. H.; Osawa, E.; Bishop, J. M.; Ho, D. Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv. Mater 2013, 25, 3532–3541.

22

Man, H. B.; Ho, D. Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing. Phys. Status Solidi (A) 2012, 209, 1609–1618.

23

Lin, S.; Xie, P. L.; Luo, M.; Li, Q.; Li, L.; Zhang, J. Z.; Zheng, Q. X.; Chen, H.; Nan, K. H. Efficiency against multidrug resistance by co-delivery of doxorubicin and curcumin with a legumain-sensitive nanocarrier. Nano Res. 2018, 11, 3619–3635.

24

Ma, X. W.; Zhao, Y. L.; Liang, X. J. Nanodiamond delivery circumvents tumor resistance to doxorubicin. Acta Pharmacol. Sin. 2011, 32, 543–544.

25

Man, H. B.; Lam, R.; Chen, M.; Osawa, E.; Ho, D. Nanodiamond-therapeutic complexes embedded within poly(ethylene glycol) diacrylate hydrogels mediating sequential drug elution. Phys. Status Solidi (A) 2012, 209, 1811–1818.

26

Xiao, J. S.; Duan, X. P.; Yin, Q.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials 2013, 34, 9648–9656.

27

Salaam, A. D.; Hwang, P. T. J.; Poonawalla, A.; Green, H. N.; Jun, H. W.; Dean, D. Nanodiamonds enhance therapeutic efficacy of doxorubicin in treating metastatic hormone-refractory prostate cancer. Nanotechnology 2014, 25, 425103.

28

Moore, L.; Yang, J. Y.; Lan, T. T. H.; Osawa, E.; Lee, D. K.; Johnson, W. D.; Xi, J. Z.; Chow, E. K. H.; Ho, D. Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis. ACS Nano 2016, 10, 7385–7400.

29

Service, P. H. Position statement on use of animals in research. NIH Guide 1993, 22.

30

U.S. Office of Science and Technology Policy. Laboratory animal welfare; U.S. government principles for the utilization and care of vertebrate animals used in testing, research and training; notice. Fed. Regist. 1985, 50, 20864–20865.

31

Wang, H.; Niu, Y. Y.; Si, W.; Li, Y. J.; Yan, Y. Reference data of clinical chemistry, haematology and blood coagulation parameters in juvenile cynomolgus monkeys (Macaca fascicularis). Vet. Med. 2012, 57, 233–238.

32

Huang, H. J.; Pierstorff, E.; Osawa, E.; Ho, D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007, 7, 3305–3314.

33

Ōsawa, E.; Ho, D.; Huang, H. J.; Korobov, M. V.; Rozhkova, N. N. Consequences of strong and diverse electrostatic potential fields on the surface of detonation nanodiamond particles. Diam. Relat. Mater. 2009, 18, 904–909.

34

Man, H. B.; Kim, H.; Kim, H. J.; Robinson, E.; Liu, W. K.; Chow, E. K. H.; Ho, D. Synthesis of nanodiamond-daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 359–369.

35

Bokarev, A. N.; Plastun, I. L. Possibility of drug delivery due to hydrogen bonds formation in nanodiamonds and doxorubicin: Molecular modeling. Nanosyst.: Phys. Chem. Math. 2018, 9, 370–377.

36

Paciotti, G. F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R. E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004, 11, 169–183.

37

Kayal, S.; Ramanujan, R. V. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater. Sci. Eng.: C 2010, 30, 484–490.

38

Wang, H. D.; Yang, Q. Q.; Niu, C. H. Functionalization of nanodiamond particles with N, O-carboxymethyl chitosan. Diam. Relat. Mater. 2010, 19, 441–444.

39

Ballet, F.; Vrignaud, P.; Robert, J.; Rey, C.; Poupon, R. Hepatic extraction, metabolism and biliary excretion of doxorubicin in the isolated prefused rat liver. Cancer Chemother. Pharmacol. 1987, 19, 240–245.

40

Khalid, A.; Mitropoulos, A. N.; Marelli, B.; Tomljenovic-Hanic, S.; Omenetto, F. G. Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release. Biomed. Opt. Express 2016, 7, 132–147.

41

Yuan, Y.; Chen, Y. W.; Liu, J. H.; Wang, H. F.; Liu, Y. F. Biodistribution and fate of nanodiamonds in vivo. Diam. Relat. Mater. 2009, 18, 95–100.

42

Puzyr, A. P.; Bortnikov, E. V.; Skobelev, N. N.; Tyan, A. G.; Manashev, G. G.; Bondar, V. A possibility of using of intravenous administration of sterile colloids of modified nanodiamonds. Sib. Med. Obzor 2005, 1, 20–24.

43
Polton, G. Appendix I - tables. In Veterinary Hematology: A Diagnostic Guide and Color Atlas; Harvey, J. W., Ed.; Saunders: St. Louis, Mo., 2012; pp 328–335.
44
Nemzek, J. A.; Lester, P. A.; Wolfe, A. M.; Dysko, R. C.; Myers, D. D. Biology and diseases of dogs. In Laboratory Animal Medicine; Fox, J. G.; Anderson, L. C.; Otto, G. M.; Pritchett-Corning, K. R.; Whary, M. T., Eds.; Academic Press: Boston, 2015; pp 511–554.
45

Forster, G. M.; Stockman, J.; Noyes, N.; Heuberger, A. L.; Broeckling, C. D.; Bantle, C. M.; Ryan, E. P. A comparative study of serum biochemistry, metabolome and microbiome parameters of clinically healthy, normal weight, overweight, and obese companion dogs. Top. Companion Anim. Med. 2018, 33, 126–135.

46
Rizzi, T. E.; Valenciano, A.; Bowles, M.; Cowell, R.; Tyler, R.; DeNicola, D. B. Atlas of Canine and Feline Urinalysis; John Wiley & Sons, Inc.: Hoboken, 2017.
47

Zou, Q.; Li, Y. G.; Zou, L. H.; Wang, M. Z. Characterization of structures and surface states of the nanodiamond synthesized by detonation. Mater. Charact. 2009, 60, 1257–1262.

48

Rojas, S.; Gispert, J. D.; Martín, R.; Abad, S.; Menchón, C.; Pareto, D.; Víctor, V. M.; Álvaro, M.; García, H.; Herance, J. R. Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission. ACS Nano 2011, 5, 5552–5559.

49

Lu, W. J.; Yao, J.; Zhu, X.; Qi, Y. Nanomedicines: Redefining traditional medicine. Biomed. Pharmacother. 2021, 134, 111103.

50

Cui, Z. F.; Zhang, Y.; Zhang, J. C.; Kong, H. T.; Tang, X. X.; Pan, L.; Xia, K.; Aldalbahi, A.; Li, A. G.; Tai, R. Z. et al. Sodium alginate-functionalized nanodiamonds as sustained chemotherapeutic drug-release vectors. Carbon 2016, 97, 78–86.

51

Yang, G.; Long, W.; Yan, W.; Huang, H.; Liu, M.; Ouyang, H.; Feng, Y.; Liu, L.; Zhang, X.; Wei, Y. Surf ace PEGylation of nanodiamond through a facile Michael addition reaction for intracellular drug delivery. J. Drug Deliv. Sci. Tec. 2020, 57, 101644.

52

Uthappa, U. T.; Arvind, O. R.; Sriram, G.; Losic, D.; Ho-Young-Jung; Kigga, M.; Kurkuri, M. D. Nanodiamonds and their surface modification strategies for drug delivery applications. J. Drug Deliv. Sci. Technol. 2020, 60, 101993.

53

Moghimi, S. M. Nanomedicine safety in preclinical and clinical development: Focus on idiosyncratic injection/infusion reactions. Drug Discov. Today 2018, 23, 1034–1042.

54

Singh, A. V.; Ansari, M. H. D.; Rosenkranz, D.; Maharjan, R. S.; Kriegel, F. L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater. 2020, 9, 1901862.

55

Hartung, T. Perspectives on in vitro to in vivo extrapolations. Appl. In Vitro Toxicol. 2018, 4, 305–316.

56

Zhang, C. Y.; Yan, L.; Wang, X.; Zhu, S.; Chen, C. Y.; Gu, Z. J.; Zhao, Y. L. Progress, challenges, and future of nanomedicine. Nano Today 2020, 35, 101008.

Nano Research
Pages 3356-3366
Cite this article:
Wang L, Su W, Ahmad KZ, et al. Safety evaluation of nanodiamond-doxorubicin complexes in a Naïve Beagle canine model using hematologic, histological, and urine analysis. Nano Research, 2022, 15(4): 3356-3366. https://doi.org/10.1007/s12274-021-3867-0
Topics:

1058

Views

13

Crossref

19

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 29 June 2021
Revised: 24 August 2021
Accepted: 04 September 2021
Published: 18 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return