Journal Home > Volume 15 , Issue 4

Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations, while the elusive molecular mechanisms hinder their clinical transformation. Herein, it is initially revealed that nanosize aminated fullerene (C70-EDA) can activate autophagic flux, induce G0/G1 cell cycle arrest to abrogate cancer cell proliferation, and significantly inhibit tumor growth in vivo. Mechanismly, C70-EDA promotes the expression of cathepsin D involved in autophagic activation via post-transcriptional regulation, attributing to the interaction with a panel of RNA binding proteins. The accumulation of cathepsin D induces the autophagic degradation of cyclin D1, which arouses G0/G1 phase arrest. This work unveils the fantastic anti-tumor activity of aminated fullerene, elucidates the molecular mechanism, and provides a new strategy for the antineoplastic drug development on functional fullerenes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanosize aminated fullerene for autophagic flux activation and G0/G1 phase arrest in cancer cells via post-transcriptional regulation

Show Author's information Xiaoyan Zhang1,§Wei Zhou1,§Yang Liu1,§Linyu Jin2Jiawei Huo1Yang Yang1Shumu Li1Haijun Ma1Jiao Li1Mingming Zhen1Jie Li1( )Chunru Wang1( )
Beijing National Research Center for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
Department of Spinal Surgery, Peking University People’s Hospital, Peking University, Beijing 100034, China

§ Xiaoyan Zhang, Wei Zhou, and Yang Liu contributed equally to this work.

Abstract

Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations, while the elusive molecular mechanisms hinder their clinical transformation. Herein, it is initially revealed that nanosize aminated fullerene (C70-EDA) can activate autophagic flux, induce G0/G1 cell cycle arrest to abrogate cancer cell proliferation, and significantly inhibit tumor growth in vivo. Mechanismly, C70-EDA promotes the expression of cathepsin D involved in autophagic activation via post-transcriptional regulation, attributing to the interaction with a panel of RNA binding proteins. The accumulation of cathepsin D induces the autophagic degradation of cyclin D1, which arouses G0/G1 phase arrest. This work unveils the fantastic anti-tumor activity of aminated fullerene, elucidates the molecular mechanism, and provides a new strategy for the antineoplastic drug development on functional fullerenes.

Keywords: aminated fullerene, autophagic flux, G0/G1 phase arrest, post-transcription regulation

References(33)

1

Li, J. X.; Chen, L. L.; Su, H. R.; Yan, L.; Gu, Z. J.; Chen, Z. F.; Zhang, A. P.; Zhao, F.; Zhao, Y. L. The pharmaceutical multi-activity of metallofullerenol invigorates cancer therapy. Nanoscale 2019, 11, 14528–14539.

2

Yin, J. J.; Lao, F.; Fu, P. P.; Wamer, W. G.; Zhao, Y. L.; Wang, P. C.; Qiu, Y.; Sun, B. Y.; Xing, G. M.; Dong, J. Q. et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 2009, 30, 611–621.

3

Wang, J. X.; Chen, C. Y.; Li, B.; Yu, H. W.; Zhao, Y. L.; Sun, J.; Li, Y. F.; Xing, G. M.; Yuan, H.; Tang, J. et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem. Pharmacol. 2006, 71, 872–881.

4

Meng, H.; Xing, G. M.; Sun, B. Y.; Zhao, F.; Lei, H.; Li, W.; Song, Y.; Chen, Z.; Yuan, H.; Wang, X. X. et al. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 2010, 4, 2773–2783.

5

Li, X.; Zhen, M. M.; Deng, R. J.; Yu, T.; Li, J.; Zhang, Y.; Zou, T. J.; Zhou, Y.; Lu, Z. G.; Guan, M. R. et al. RF-assisted gadofullerene nanoparticles induces rapid tumor vascular disruption by down-expression of tumor vascular endothelial cadherin. Biomaterials 2018, 163, 142–153.

6

Liu, Y.; Jiao, F.; Qiu, Y.; Li, W.; Lao, F.; Zhou, G. Q.; Sun, B. Y.; Xing, G. M.; Dong, J. Q.; Zhao, Y. L. et al. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity. Biomaterials 2009, 30, 3934–3945.

7

Wang, B. B.; Yang, D.; Sun, B. Y.; Wei, X. Y.; Guo, H.; Liu, X. L.; Ying, G. G.; Niu, R. F.; Zhang, N.; Ma, Y. J. An anti-tumor nanoparticle, [Gd@C82(OH)22]n, induces macrophage activation. J. Nanosci. Nanotechnol. 2011, 11, 2321–2329.

8

Liu, J.; Kang, S. G.; Wang, P.; Wang, Y.; Lv, X. N.; Liu, Y.; Wang, F.; Gu, Z. L.; Yang, Z. X.; Weber, J. K. et al. Molecular mechanism of Gd@C82(OH)22 increasing collagen expression: Implication for encaging tumor. Biomaterials 2018, 152, 24–36.

9

Meng, H.; Xing, G. M.; Blanco, E.; Song, Y.; Zhao, L. N.; Sun, B. Y.; Li, X. D.; Wang, P. C.; Korotcov, A.; Li, W. et al. Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: Imprisoning instead of poisoning cancer cells. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 136–146.

10

Liu, Y.; Chen, C. Y.; Qian, P. X.; Lu, X. F.; Sun, B. Y.; Zhang, X.; Wang, L. M.; Gao, X. F.; Li, H.; Chen, Z. Y. et al. Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nat. Commun. 2015, 6, 5988.

11

Yasuno, T.; Ohe, T.; Ikeda, H.; Takahashi, K.; Nakamura, S.; Mashino, T. Synthesis and antitumor activity of novel pyridinium fullerene derivatives. Int. J. Nanomedicine 2019, 14, 6325–6337.

12

Wong, C. W.; Zhilenkov, A. V.; Kraevaya, O. A.; Mischenko, D. V.; Troshin, P. A.; Hsu, S. H. Toward understanding the antitumor effects of water-soluble fullerene derivatives on lung cancer cells: Apoptosis or autophagy pathways? J. Med. Chem. 2019, 62, 7111–7125.

13

Xu, J.; Wang, H. S.; Hu, Y.; Zhang, Y. S.; Wen, L. P.; Yin, F.; Wang, Z. Y.; Zhang, Y. C.; Li, S. Y.; Miao, Y. Y. et al. Inhibition of CaMKIIα activity enhances antitumor effect of fullerene C60 nanocrystals by suppression of autophagic degradation. Adv. Sci. 2019, 6, 1801233.

14

Wei, P. F.; Zhang, L.; Lu, Y.; Man, N.; Wen, L. P. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology 2010, 21, 495101.

15

Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 349–364.

16

Li, J.; Guan, M. R.; Wang, T. S.; Zhen, M. M.; Zhao, F. W.; Shu, C. Y.; Wang, C. R. Gd@C82-(ethylenediamine)8 nanoparticle: A new high-efficiency water-soluble ROS scavenger. ACS Appl. Mater. Interfaces 2016, 8, 25770–25776.

17

Zhou, W.; Huo, J. W.; Yang, Y.; Zhang, X. Y.; Li, S. M.; Zhao, C.; Ma, H. J.; Liu, Y.; Liu, J. N.; Li, J. et al. Aminated fullerene abrogates cancer cell migration by directly targeting myosin heavy chain 9. ACS Appl. Mater. Interfaces 2020, 12, 56862–56873.

18

Mathiassen, S. G.; De Zio, D.; Cecconi, F. Autophagy and the cell cycle: A complex landscape. Front. Oncol. 2017, 7, 51.

19

Zheng, K.; He, Z. D.; Kitazato, K.; Wang, Y. F. Selective autophagy regulates cell cycle in cancer therapy. Theranostics 2019, 9, 104–125.

20

Wu, S. Y.; Lan, S. H.; Wu, S. R.; Chiu, Y. C.; Lin, X. Z.; Su, I. J.; Tsai, T. F.; Yen, C. J.; Lu, T. H.; Liang, F. W. et al. Hepatocellular carcinoma-related cyclin D1 is selectively regulated by autophagy degradation system. Hepatology 2018, 68, 141–154.

21

Mizushima, N.; Yoshimori, T.; Levine, B. Methods in mammalian autophagy research. Cell 2010, 140, 313–326.

22

Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 2017, 86, 193–224.

23

Settembre, C.; Fraldi, A.; Jahreiss, L.; Spampanato, C.; Venturi, C.; Medina, D.; de Pablo, R.; Tacchetti, C.; Rubinsztein, D. C.; Ballabio, A. A block of autophagy in lysosomal storage disorders. Hum. Mol. Genet. 2008, 17, 119–129.

24

Yang, L. Y.; Hua, S. Y.; Fan, J. P.; Zhou, Z. Q.; Wang, G. C.; Jiang, F. L.; Xie, Z. X.; Xiao, Q.; Liu, Y. Inhibition of autophagy via lysosomal impairment enhances cytotoxicity of fullerenol under starvation condition. ACS Appl. Bio Mater. 2020, 3, 977–985.

25

Johnson-Lyles, D. N.; Peifley, K.; Lockett, S.; Neun, B. W.; Hansen, M.; Clogston, J.; Stern, S. T.; McNeil, S. E. Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol. Appl. Pharmacol. 2010, 248, 249–258.

26

Hah, Y. S.; Noh, H. S.; Ha, J. H.; Ahn, J. S.; Hahm, J. R.; Cho, H. Y.; Kim, D. R. Cathepsin D inhibits oxidative stress-induced cell death via activation of autophagy in cancer cells. Cancer Lett. 2012, 323, 208–214.

27

Thirusangu, P.; Pathoulas, C. L.; Ray, U.; Xiao, Y. N.; Staub, J.; Jin, L.; Khurana, A.; Shridhar, V. Quinacrine-induced autophagy in ovarian cancer triggers cathepsin-l mediated lysosomal/mitochondrial membrane permeabilization and cell death. Cancers (Basel) 2021, 13, 2004.

28

Ishidoh, K.; Kominami, E. Gene regulation and extracellular functions of procathepsin L. Biol. Chem. 1998, 379, 131–135.

29

Sun, Y.; Grabowski, G. A. Altered autophagy in the mice with a deficiency of saposin A and saposin B. Autophagy 2013, 9, 1115–1116.

30

Grosset, C.; Chen, C. Y. A.; Xu, N. H.; Sonenberg, N.; Jacquemin-Sablon, H.; Shyu, A. B. A mechanism for translationally coupled mRNA turnover: Interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell 2000, 103, 29–40.

31

Fichtman, B.; Harel, T.; Biran, N.; Zagairy, F.; Applegate, C. D.; Salzberg, Y.; Gilboa, T.; Salah, S.; Shaag, A.; Simanovsky, N. et al. Pathogenic variants in NUP214 cause "plugged" nuclear pore channels and acute febrile encephalopathy. Am. J. Hum. Genet. 2019, 105, 48–64.

32

Hashizume, C.; Moyori, A.; Kobayashi, A.; Yamakoshi, N.; Endo, A.; Wong, R. W. Nucleoporin Nup62 maintains centrosome homeostasis. Cell Cycle 2013, 12, 3804–3816.

33

Krull, S.; Thyberg, J.; Björkroth, B.; Rackwitz, H. R.; Cordes, V. C. Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol. Biol. Cell 2004, 15, 4261–4277.

File
12274_2021_3866_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 June 2021
Revised: 30 August 2021
Accepted: 04 September 2021
Published: 15 October 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51802310). All animal experiments were conducted according to protocols approved by the Institutional Animal Care and Use Committee in the Institute of Chemistry, Chinese Academy of Sciences. We also thank Shuo Xiao (Thermo Fisher Scientific) for the flow cytometry support.

Return