Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Layered Mn-based oxides are one of the promising cathode materials for potassium-ion batteries (KIBs) owing to their high theoretical capacities, abundant material supply, and simple synthesis method. However, the structural deterioration resulting from the Jahn-Teller effect of Mn ions hinders their further development in KIBs. Herein, a novel Mn-based layered oxide, K0.54Mn0.78Mg0.22O2, is successfully designed and fabricated as KIBs cathode for the first time. It delivers smooth charging/discharging curves with high specific capacity of 132.4 mAh·g‒1 at 20 mA·g‒1 and good high-rate cycling stability with a capacity retention of 84% over 100 cycles at 200 mA·g‒1. Combining in-situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy (XPS) analysis, the storage of K-ions by K0.54Mn0.78Mg0.22O2 is revealed to be a solid-solution processes with reversible slip of the crystal lattice. The studies suggest that the rational doping of inactive Mg2+ can effectively suppress the Jahn-Teller effect and provide outstanding structure stability. This work deepens the understanding of the structural evolution of Mn-based layered materials doped with inactive materials during de/potassiation processes.
Ma, F.; Li, Q.; Wang, T. Y.; Zhang, H. G.; Wu, G. Energy storage materials derived from Prussian blue analogues. Sci. Bull. 2017, 62, 358–368.
Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.
Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.
Cha, H.; Kim, J.; Lee, Y.; Cho, J.; Park, M. Issues and challenges facing flexible lithium-ion batteries for practical application. Small 2018, 14, 1702989.
Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.
Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.
Hwang, J. Y.; Kim, J.; Yu, T. Y.; Jung, H. G.; Sun, Y. K. New P2-type layered oxide cathode with superior full-cell performances for K-ion batteries. J. Mater. Chem. A 2019, 7, 21362–21370.
Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.
Zhang, J. D.; Liu, T. T.; Cheng, X.; Xia, M. T.; Zheng, R. T.; Peng, N.; Yu, H. X.; Shui, M.; Shu, J. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy 2019, 60, 340–361.
Yao, Q. Q.; Zhu, C. B. Advanced post-potassium-ion batteries as emerging potassium-based alternatives for energy storage. Adv. Funct. Mater. 2020, 30, 2005209.
Huang, R. L.; Lin, J.; Zhou, J. H.; Fan, E. S.; Zhang, X. X.; Chen, R. J.; Wu, F.; Li, L. Hierarchical triple-shelled MnCo2O4 hollow microspheres as high-performance anode materials for potassium-ion batteries. Small 2021, 17, 2007597.
Bai, P. L.; Jiang, K. Z.; Zhang, X. P.; Xu, J. L.; Guo, S. H.; Zhou, H. S. Ni-doped layered manganese oxide as a stable cathode for potassium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 10490–10495.
Zhang, X. Y.; Yang, Y. B.; Qu, X. L.; Wei, Z. X.; Sun, G.; Zheng, K.; Yu, H. J.; Du, F. Layered P2-type K0.44Ni0.22Mn0.78O2 as a high-performance cathode for potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1905679.
Chong, S. K.; Wu, Y. F.; Liu, C. F.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N.; Cao, G. Z. Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy 2018, 54, 106–115.
Xue, Q.; Li, L.; Huang, Y. X.; Huang, R. L.; Wu, F.; Chen, R. J. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl. Mater. Interfaces 2019, 11, 22339–22345.
Zhang, C. L.; Xu, Y.; Zhou, M.; Liang, L. Y.; Dong, H. S.; Wu, M. H.; Yang, Y.; Lei, Y. Potassium Prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.
Han, J.; Li, G. N.; Liu, F.; Wang, M. Q.; Zhang, Y.; Hu, L. Y.; Dai, C. L.; Xu, M. W. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 2017, 53, 1805–1808.
Gao, H. C.; Xue, L. G.; Xin, S.; Goodenough, J. B. A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew. Chem., Int. Ed. 2018, 57, 5449–5453.
Obrezkov, F. A.; Ramezankhani, V.; Zhidkov, I.; Traven, V. F.; Kurmaev, E. Z.; Stevenson, K. J.; Troshin, P. A. High-energy and high-power-density potassium ion batteries using dihydrophenazine-based polymer as active cathode material. J. Phys. Chem. Lett. 2019, 10, 5440–5445.
Hwang, J. Y.; Kim, J.; Yu, T. Y.; Myung, S. T.; Sun, Y. K. Development of P3-K0.69CrO2 as an ultra-high-performance cathode material for K-ion batteries. Energy Environ. Sci. 2018, 11, 2821–2827.
Choi, J. U.; Kim, J.; Hwang, J. Y.; Jo, J. H.; Sun, Y. K.; Myung, S. T. K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries. Nano Energy 2019, 61, 284–294.
Vaalma, C.; Giffin, G. A.; Buchholz, D.; Passerini, S. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J. Electrochem. Soc. 2016, 163, A1295–A1299.
Kim, H.; Seo, D. H,; Kim, J. C.; Bo, S. H.; Liu, L.; Shi, T.; Ceder, G. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode. Adv. Mater. 2017, 29, 1702480.
Zhao, S. Q.; Yan, K.; Munroe, P.; Sun, B.; Wang, G. X. Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for high-performance potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1803757.
Liu, C. L.; Luo, S. H.; Huang, H. B.; Liu, X.; Zhai, Y. C.; Wang, Z. W. Fe-doped layered P3-type K0.45Mn1-xFexO2 (x≤0.5) as cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2019, 378, 122167.
Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2014, 2, 16851–16855.
Zhang, Q.; Didier, C.; Pang, W. K.; Liu, Y. J.; Wang, Z. J.; Li, S. A.; Peterson, V. K.; Mao, J. F.; Guo, Z. P. Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900568.
Talaie, E.; Duffort, V.; Smith, H. L.; Fultz, B.; Nazar, L. F. Structure of the high voltage phase of layered P2-Na2/3-Z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 2015, 8, 2512–2523.
Singh, G.; Tapia-Ruiz, N.; Del Amo, J. M. L.; Maitra, U.; Somerville, J. W.; Armstrong, A. R.; De Ilarduya, J. M.; Rojo, T.; Bruce, P. G. High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x=0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability. Chem. Mater. 2016, 28, 5087–5094.
Barker, J.; Gover, R. K. B.; Burns, P.; Bryan, A. The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate, Li3V2(PO4)3. J. Electrochem. Soc. 2007, 154, A307–A313.
Xiang, J. F.; Chang, C. X.; Zhang, F.; Sun, J. T. Effects of Mg doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. J. Alloys Compd. 2009, 475, 483–487.
Somerville, J. W.; House, R. A.; Tapia-Ruiz, N.; Sobkowiak, A.; Ramos, S.; Chadwick, A. V.; Roberts, M. R.; Maitra, U.; Bruce, P. G. Identification and characterisation of high energy density P2-type Na2/3[Ni1/3-y/2Mn2/3-y/2Fey]O2 compounds for Na-ion batteries. J. Mater. Chem. A 2018, 6, 5271–5275.
Wang, P. F.; You, Y.; Yin, Y. X.; Wang, Y. S.; Wan, L. J.; Gu, L.; Guo, Y. G. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 7445–7449.
Liu, C. L.; Luo, S. H.; Huang, H. B.; Wang, Z. Y.; Hao, A. M.; Zhai, Y. C.; Wang, Z. W. K0.67Ni0.17Co0.17Mn0.66O2: A cathode material for potassium-ion battery. Electrochem. Commun. 2017, 82, 150–154.
Sada, K.; Barpanda, P. P3-type layered K0.48Mn0.4Co0.6O2: A novel cathode material for potassium-ion batteries. Chem. Commun. 2020, 56, 2272–2275.
Chong, S. K.; Wu, Y. F.; Chen, Y. Z.; Guo, S. W.; Tai, Z. G.; Shu, C. Y.; Tan, Q.; Sun, J. J.; Liu, Y. N. Mn-based layered oxide microspheres assembled by ultrathin nanosheets as cathode material for potassium-ion batteries. Electrochim. Acta 2019, 293, 299–306.
Lin, J.; Li, L.; Fan, E. S.; Liu, C. W.; Zhang, X. D.; Cao, H. B.; Sun, Z.; Chen, R. J. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting. ACS Appl. Mater. Interfaces 2020, 12, 18482–18489.
Liu, C. L.; Luo, S. H.; Huang, H. B.; Zhai, Y. C.; Wang, Z. W. Low-cost layered K0.45Mn0.9Mg0.1O2 as a high-performance cathode material for K-ion batteries. ChemElectroChem 2019, 6, 2308–2315.
Weng, J. Y.; Duan, J.; Sun, C. L.; Liu, P.; Li, A. X.; Zhou, P. F.; Zhou, J. Construction of hierarchical K0.7Mn0.7Mg0.3O2 microparticles as high capacity & long cycle life cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2020, 392, 123649.
Deng, L. Q.; Wang, T. S.; Hong, Y. R.; Feng, M. Y.; Wang, R. T.; Zhang, J.; Zhang, Q. F.; Wang, J. W.; Zeng, L.; Zhu, Y. J. et al. A nonflammable electrolyte enabled high performance K0.5MnO2 cathode for low-cost potassium-ion batteries. ACS Energy Lett. 2020, 5, 1916–1922.
Wang, X. P.; Xu, X. M.; Niu, C. J.; Meng, J. S.; Huang, M.; Liu, X.; Liu, Z. A.; Mai, L. Q. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 2017, 17, 544–550.
Lu, Z. H.; Dahn, J. R. In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J. Electrochem. Soc. 2001, 148, A1225–A1229.
Lin, B. W.; Zhu, X. H.; Fang, L. Z.; Liu, X. Y.; Li, S.; Zhai, T.; Xue, L.; Guo, Q. B.; Xu, J.; Xia, H. Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries. Adv. Mater. 2019, 31, 1900060.
893
Views
27
Downloads
16
Crossref
20
Web of Science
19
Scopus
0
CSCD
Altmetrics