AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries

Ruling Huang1Qing Xue2Jiao Lin1XiXue Zhang1Jiahui Zhou1Feng Wu1,3,4,5Li Li1,3,4,5( )Renjie Chen1,4,5
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute Co. Ltd., Beijing 102209, China
Guangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing, Guangzhou 511447, China
Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
Show Author Information

Graphical Abstract

Layered K0.54Mn0.78Mg0.22O2 is fabricated as potassium-ion batteries (PIBs) cathode for the first time, which delivers smooth charging/discharging curves with high specific capacity and good high-rate cycling stability. In-situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy (XPS) characterization are also used to explore the structural reorganization.

Abstract

Layered Mn-based oxides are one of the promising cathode materials for potassium-ion batteries (KIBs) owing to their high theoretical capacities, abundant material supply, and simple synthesis method. However, the structural deterioration resulting from the Jahn-Teller effect of Mn ions hinders their further development in KIBs. Herein, a novel Mn-based layered oxide, K0.54Mn0.78Mg0.22O2, is successfully designed and fabricated as KIBs cathode for the first time. It delivers smooth charging/discharging curves with high specific capacity of 132.4 mAh·g‒1 at 20 mA·g‒1 and good high-rate cycling stability with a capacity retention of 84% over 100 cycles at 200 mA·g‒1. Combining in-situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy (XPS) analysis, the storage of K-ions by K0.54Mn0.78Mg0.22O2 is revealed to be a solid-solution processes with reversible slip of the crystal lattice. The studies suggest that the rational doping of inactive Mg2+ can effectively suppress the Jahn-Teller effect and provide outstanding structure stability. This work deepens the understanding of the structural evolution of Mn-based layered materials doped with inactive materials during de/potassiation processes.

Electronic Supplementary Material

Download File(s)
12274_2021_3863_MOESM1_ESM.pdf (450.9 KB)

References

1

Ma, F.; Li, Q.; Wang, T. Y.; Zhang, H. G.; Wu, G. Energy storage materials derived from Prussian blue analogues. Sci. Bull. 2017, 62, 358–368.

2

Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

3

Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

4

Cha, H.; Kim, J.; Lee, Y.; Cho, J.; Park, M. Issues and challenges facing flexible lithium-ion batteries for practical application. Small 2018, 14, 1702989.

5

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

6

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

7

Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.

8

Hwang, J. Y.; Kim, J.; Yu, T. Y.; Jung, H. G.; Sun, Y. K. New P2-type layered oxide cathode with superior full-cell performances for K-ion batteries. J. Mater. Chem. A 2019, 7, 21362–21370.

9

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

10

Zhang, J. D.; Liu, T. T.; Cheng, X.; Xia, M. T.; Zheng, R. T.; Peng, N.; Yu, H. X.; Shui, M.; Shu, J. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy 2019, 60, 340–361.

11

Yao, Q. Q.; Zhu, C. B. Advanced post-potassium-ion batteries as emerging potassium-based alternatives for energy storage. Adv. Funct. Mater. 2020, 30, 2005209.

12

Huang, R. L.; Lin, J.; Zhou, J. H.; Fan, E. S.; Zhang, X. X.; Chen, R. J.; Wu, F.; Li, L. Hierarchical triple-shelled MnCo2O4 hollow microspheres as high-performance anode materials for potassium-ion batteries. Small 2021, 17, 2007597.

13

Bai, P. L.; Jiang, K. Z.; Zhang, X. P.; Xu, J. L.; Guo, S. H.; Zhou, H. S. Ni-doped layered manganese oxide as a stable cathode for potassium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 10490–10495.

14

Zhang, X. Y.; Yang, Y. B.; Qu, X. L.; Wei, Z. X.; Sun, G.; Zheng, K.; Yu, H. J.; Du, F. Layered P2-type K0.44Ni0.22Mn0.78O2 as a high-performance cathode for potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1905679.

15

Chong, S. K.; Wu, Y. F.; Liu, C. F.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N.; Cao, G. Z. Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy 2018, 54, 106–115.

16

Xue, Q.; Li, L.; Huang, Y. X.; Huang, R. L.; Wu, F.; Chen, R. J. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl. Mater. Interfaces 2019, 11, 22339–22345.

17

Zhang, C. L.; Xu, Y.; Zhou, M.; Liang, L. Y.; Dong, H. S.; Wu, M. H.; Yang, Y.; Lei, Y. Potassium Prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.

18

Han, J.; Li, G. N.; Liu, F.; Wang, M. Q.; Zhang, Y.; Hu, L. Y.; Dai, C. L.; Xu, M. W. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 2017, 53, 1805–1808.

19

Gao, H. C.; Xue, L. G.; Xin, S.; Goodenough, J. B. A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew. Chem., Int. Ed. 2018, 57, 5449–5453.

20

Obrezkov, F. A.; Ramezankhani, V.; Zhidkov, I.; Traven, V. F.; Kurmaev, E. Z.; Stevenson, K. J.; Troshin, P. A. High-energy and high-power-density potassium ion batteries using dihydrophenazine-based polymer as active cathode material. J. Phys. Chem. Lett. 2019, 10, 5440–5445.

21

Hwang, J. Y.; Kim, J.; Yu, T. Y.; Myung, S. T.; Sun, Y. K. Development of P3-K0.69CrO2 as an ultra-high-performance cathode material for K-ion batteries. Energy Environ. Sci. 2018, 11, 2821–2827.

22

Choi, J. U.; Kim, J.; Hwang, J. Y.; Jo, J. H.; Sun, Y. K.; Myung, S. T. K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries. Nano Energy 2019, 61, 284–294.

23

Vaalma, C.; Giffin, G. A.; Buchholz, D.; Passerini, S. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J. Electrochem. Soc. 2016, 163, A1295–A1299.

24

Kim, H.; Seo, D. H,; Kim, J. C.; Bo, S. H.; Liu, L.; Shi, T.; Ceder, G. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode. Adv. Mater. 2017, 29, 1702480.

25

Zhao, S. Q.; Yan, K.; Munroe, P.; Sun, B.; Wang, G. X. Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for high-performance potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1803757.

26

Liu, C. L.; Luo, S. H.; Huang, H. B.; Liu, X.; Zhai, Y. C.; Wang, Z. W. Fe-doped layered P3-type K0.45Mn1-xFexO2 (x≤0.5) as cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2019, 378, 122167.

27

Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2014, 2, 16851–16855.

28

Zhang, Q.; Didier, C.; Pang, W. K.; Liu, Y. J.; Wang, Z. J.; Li, S. A.; Peterson, V. K.; Mao, J. F.; Guo, Z. P. Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900568.

29

Talaie, E.; Duffort, V.; Smith, H. L.; Fultz, B.; Nazar, L. F. Structure of the high voltage phase of layered P2-Na2/3-Z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 2015, 8, 2512–2523.

30

Singh, G.; Tapia-Ruiz, N.; Del Amo, J. M. L.; Maitra, U.; Somerville, J. W.; Armstrong, A. R.; De Ilarduya, J. M.; Rojo, T.; Bruce, P. G. High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x=0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability. Chem. Mater. 2016, 28, 5087–5094.

31

Barker, J.; Gover, R. K. B.; Burns, P.; Bryan, A. The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate, Li3V2(PO4)3. J. Electrochem. Soc. 2007, 154, A307–A313.

32

Xiang, J. F.; Chang, C. X.; Zhang, F.; Sun, J. T. Effects of Mg doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. J. Alloys Compd. 2009, 475, 483–487.

33

Somerville, J. W.; House, R. A.; Tapia-Ruiz, N.; Sobkowiak, A.; Ramos, S.; Chadwick, A. V.; Roberts, M. R.; Maitra, U.; Bruce, P. G. Identification and characterisation of high energy density P2-type Na2/3[Ni1/3-y/2Mn2/3-y/2Fey]O2 compounds for Na-ion batteries. J. Mater. Chem. A 2018, 6, 5271–5275.

34

Wang, P. F.; You, Y.; Yin, Y. X.; Wang, Y. S.; Wan, L. J.; Gu, L.; Guo, Y. G. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 7445–7449.

35

Liu, C. L.; Luo, S. H.; Huang, H. B.; Wang, Z. Y.; Hao, A. M.; Zhai, Y. C.; Wang, Z. W. K0.67Ni0.17Co0.17Mn0.66O2: A cathode material for potassium-ion battery. Electrochem. Commun. 2017, 82, 150–154.

36

Sada, K.; Barpanda, P. P3-type layered K0.48Mn0.4Co0.6O2: A novel cathode material for potassium-ion batteries. Chem. Commun. 2020, 56, 2272–2275.

37

Chong, S. K.; Wu, Y. F.; Chen, Y. Z.; Guo, S. W.; Tai, Z. G.; Shu, C. Y.; Tan, Q.; Sun, J. J.; Liu, Y. N. Mn-based layered oxide microspheres assembled by ultrathin nanosheets as cathode material for potassium-ion batteries. Electrochim. Acta 2019, 293, 299–306.

38

Lin, J.; Li, L.; Fan, E. S.; Liu, C. W.; Zhang, X. D.; Cao, H. B.; Sun, Z.; Chen, R. J. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting. ACS Appl. Mater. Interfaces 2020, 12, 18482–18489.

39

Liu, C. L.; Luo, S. H.; Huang, H. B.; Zhai, Y. C.; Wang, Z. W. Low-cost layered K0.45Mn0.9Mg0.1O2 as a high-performance cathode material for K-ion batteries. ChemElectroChem 2019, 6, 2308–2315.

40

Weng, J. Y.; Duan, J.; Sun, C. L.; Liu, P.; Li, A. X.; Zhou, P. F.; Zhou, J. Construction of hierarchical K0.7Mn0.7Mg0.3O2 microparticles as high capacity & long cycle life cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2020, 392, 123649.

41

Deng, L. Q.; Wang, T. S.; Hong, Y. R.; Feng, M. Y.; Wang, R. T.; Zhang, J.; Zhang, Q. F.; Wang, J. W.; Zeng, L.; Zhu, Y. J. et al. A nonflammable electrolyte enabled high performance K0.5MnO2 cathode for low-cost potassium-ion batteries. ACS Energy Lett. 2020, 5, 1916–1922.

42

Wang, X. P.; Xu, X. M.; Niu, C. J.; Meng, J. S.; Huang, M.; Liu, X.; Liu, Z. A.; Mai, L. Q. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 2017, 17, 544–550.

43

Lu, Z. H.; Dahn, J. R. In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. J. Electrochem. Soc. 2001, 148, A1225–A1229.

44

Lin, B. W.; Zhu, X. H.; Fang, L. Z.; Liu, X. Y.; Li, S.; Zhai, T.; Xue, L.; Guo, Q. B.; Xu, J.; Xia, H. Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries. Adv. Mater. 2019, 31, 1900060.

Nano Research
Pages 3143-3149
Cite this article:
Huang R, Xue Q, Lin J, et al. Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries. Nano Research, 2022, 15(4): 3143-3149. https://doi.org/10.1007/s12274-021-3863-4
Topics:

893

Views

27

Downloads

16

Crossref

20

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 22 June 2021
Revised: 06 August 2021
Accepted: 02 September 2021
Published: 18 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return