Journal Home > Volume 15 , Issue 4

Porous liquids (PLs) offer the potential to combine the ready handling and mature industry status of liquid absorbents, with the high permanent porosity of metal organic frameworks. To be functional, these nanocomposites need to satisfy a number of performance parameters, such as stability and viscosity of the porogen-solvent combination, avoiding solvent penetration into metal organic framework (MOF) pores, suitable capacities, and kinetics for gas sorption. In this work, we systematically investigate the component materials to elucidate the parametric space where stable photoluminescence (PL) can be generated. In this situation, deeper conclusions were able to be drawn with regard to the influence of hydrophobicity/philicity on the properties of the resulting nanocomposites. Zeolitic imidazolate frameworks (ZIFs) were combined with a range of solvents varying in steric bulk, to deliver CO2 sorption capacities as high as 4.2 mmol·g–1 at 10 bar. These findings may have broader implications for future investigations of this tantalising field of nanocomposites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Underlying solvent-based factors that influence permanent porosity in porous liquids

Show Author's information Hamidreza Mahdavi1Huacheng Zhang2Lauren K. Macreadie3Cara M. Doherty2Durga Acharya2Stefan J. D. Smith1,2( )Xavier Mulet2( )Matthew R. Hill1,2( )
Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
CSIRO Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia
School of Chemistry, University of Sydney, Sydney 2006, Australia

Abstract

Porous liquids (PLs) offer the potential to combine the ready handling and mature industry status of liquid absorbents, with the high permanent porosity of metal organic frameworks. To be functional, these nanocomposites need to satisfy a number of performance parameters, such as stability and viscosity of the porogen-solvent combination, avoiding solvent penetration into metal organic framework (MOF) pores, suitable capacities, and kinetics for gas sorption. In this work, we systematically investigate the component materials to elucidate the parametric space where stable photoluminescence (PL) can be generated. In this situation, deeper conclusions were able to be drawn with regard to the influence of hydrophobicity/philicity on the properties of the resulting nanocomposites. Zeolitic imidazolate frameworks (ZIFs) were combined with a range of solvents varying in steric bulk, to deliver CO2 sorption capacities as high as 4.2 mmol·g–1 at 10 bar. These findings may have broader implications for future investigations of this tantalising field of nanocomposites.

Keywords: zeolitic imidazolate frameworks, gas sorption, porous liquids, permanent porosity

References(53)

1

Giri, N.; Del Pópolo, M. G.; Melaugh, G.; Greenaway, R. L.; Rätzke, K.; Koschine, T.; Pison, L.; Gomes, M. F. C.; Cooper, A. I.; James, S. L. Liquids with permanent porosity. Nature 2015, 527, 216–220.

2

Shan, W. D.; Fulvio, P. F.; Kong, L. Y.; Schott, J. A.; Do-Thanh, C. L.; Tian, T.; Hu, X. X.; Mahurin, S. M.; Xing, H. B.; Dai, S. New class of type III porous liquids: A promising platform for rational adjustment of gas sorption behavior. ACS Appl. Mater. Interfaces 2018, 10, 32–36.

3

Zhang, J. S.; Chai, S. H.; Qiao, Z. A.; Mahurin, S. M.; Chen, J. H.; Fang, Y. X.; Wan, S.; Nelson, K.; Zhang, P. F.; Dai, S. Porous liquids: A promising class of media for gas separation. Angew. Chem., Int. Ed. 2015, 54, 932–936.

4

O'Reilly, N.; Giri, N.; James, S. L. Porous liquids. Chem. –Eur. J. 2007, 13, 3020–3025.

5

Cooper, A. I. Porous molecular solids and liquids. ACS Cent. Sci. 2017, 3, 544–553.

6

Bennett, T. D.; Coudert, F. X.; James, S. L.; Cooper, A. I. The changing state of porous materials. Nat. Mater. 2021, 1–9.

7

Li, X. F.; Wang, S. J.; Chen, C. H. Experimental study of energy requirement of CO2 desorption from rich solvent. Energy Procedia 2013, 37, 1836–1843.

8

Lu, A. H.; Hao, G. P. Porous materials for carbon dioxide capture. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 2013, 109, 484.

9

James, S. L. The dam bursts for porous liquids. Adv. Mater. 2016, 28, 5712–5716.

10

Greenaway, R. L.; Holden, D.; Eden, E. G. B.; Stephenson, A.; Yong, C. W.; Bennison, M. J.; Hasell, T.; Briggs, M. E.; James, S. L.; Cooper, A. I. Understanding gas capacity, guest selectivity, and diffusion in porous liquids. Chem. Sci. 2017, 8, 2640–2651.

11

Lai, B. B.; Cahir, J.; Tsang, M. Y.; Jacquemin, J.; Rooney, D.; Murrer, B.; James, S. L. Type 3 porous liquids for the separation of ethane and ethene. ACS Appl. Mater. Interfaces 2021, 13, 932–936.

12

Wang, Y.; Sun, Y. W.; Bian, H.; Zhu, L. J.; Xia, D. H.; Wang, H. Z. Cyclodextrin porous liquid materials for efficient chiral recognition and separation of nucleosides. ACS Appl. Mater. Interfaces 2020, 12, 45916–45928.

13

Hasell, T.; Cooper, A. I. Porous organic cages: Soluble, modular and molecular pores. Nat. Rev. Mater. 2016, 1, 16053.

14

Bavykina, A.; Cadiau, A.; Gascon, J. Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coord. Chem. Rev. 2019, 386, 85–95.

15

Giri, N.; Davidson, C. E.; Melaugh, G.; Del Pópolo, M. G.; Jones, J. T. A.; Hasell, T.; Cooper, A. I.; Horton, P. N.; Hursthouse, M. B.; James, S. L. Alkylated organic cages: From porous crystals to neat liquids. Chem. Sci. 2012, 3, 2153–2157.

16

Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Wang, F.; Wang, Y. D.; Zhang, W. R.; Zheng, Y. P.; Yao, D. D.; Yang, Z. Y.; Lei, X. F. A universal approach to turn UiO-66 into type 1 porous liquids via post-synthetic modification with corona-canopy species for CO2 capture. Chem. Eng. J. 2021, 416, 127625.

17

Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Ning, H. L.; Wang, Y. D.; Yao, D. D.; Zheng, Y. P.; Meng, Z. Y.; Yang, Z. Y.; Pan, Y. T. et al. Transforming metal-organic frameworks into porous liquids via a covalent linkage strategy for CO2 capture. ACS Appl. Mater. Interfaces 2021, 13, 2600–2609.

18

Wang, D. C.; Xin, Y. Y.; Wang, Y. D.; Li, X. Q.; Wu, H.; Zhang, W. R.; Yao, D. D.; Wang, H. N.; Zheng, Y. P.; He, Z. J. et al. A general way to transform Ti3C2Tx mxene into solvent-free fluids for filler phase applications. Chem. Eng. J. 2021, 409, 128082.

19

Li, X. Q.; Wang, D. C.; He, Z. J.; Su, F. F.; Zhang, N.; Xin, Y. Y.; Wang, H. N.; Tian, X. L.; Zheng, Y. P.; Yao, D. D. et al. Zeolitic imidazolate frameworks-based porous liquids with low viscosity for CO2 and toluene uptakes. Chem. Eng. J. 2021, 417, 129239.

20

Deng, Z.; Ying, W.; Gong, K.; Zeng, Y. J.; Yan, Y. G.; Peng, X. S. Facilitate gas transport through metal-organic polyhedra constructed porous liquid membrane. Small 2020, 16, 1907016.

21

Mow, R. E.; Lipton, A. S.; Shulda, S.; Gaulding, E. A.; Gennett, T.; Braunecker, W. A. Colloidal three-dimensional covalent organic frameworks and their application as porous liquids. J. Mater. Chem. A 2020, 8, 23455–23462.

22

Cahir, J.; Tsang, M. Y.; Lai, B. B.; Hughes, D.; Alam, M. A.; Jacquemin, J.; Rooney, D.; James, S. L. Type 3 porous liquids based on non-ionic liquid phases-a broad and tailorable platform of selective, fluid gas sorbents. Chem. Sci. 2020, 11, 2077–2084.

23

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

24

Kearsey, R. J.; Alston, B. M.; Briggs, M. E.; Greenaway, R. L.; Cooper, A. I. Accelerated robotic discovery of type II porous liquids. Chem. Sci. 2019, 10, 9454–9465.

25
James, S.; Tsang, M. Y.; Cahir, J.; Rooney, D. Porous liquids 2017. U. S. Patent No. 2020/0330919 A1, 2020.
26

Liu, H.; Liu, B.; Lin, L. C.; Chen, G. J.; Wu, Y. Q.; Wang, J.; Gao, X. T.; Lv, Y. N.; Pan, Y.; Zhang, X. X. et al. A hybrid absorption-adsorption method to efficiently capture carbon. Nat. Commun. 2014, 5, 5147.

27

Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

28

Liu, S. J.; Liu, J. D.; Hou, X. D.; Xu, T. T.; Tong, J.; Zhang, J. X.; Ye, B. J.; Liu, B. Porous liquid: A stable ZIF-8 colloid in ionic liquid with permanent porosity. Langmuir 2018, 34, 3654–3660.

29

Li, Y.; Liu, J. T.; Zhang, K. H.; Lei, L.; Lei, Z. L. UiO-66-NH2@pmaa: A hybrid polymer-MOFs architecture for pectinase immobilization. Ind. Eng. Chem. Res. 2018, 57, 559–567.

30

Kalaj, M.; Denny, M. S. Jr.; Bentz, K. C.; Palomba, J. M.; Cohen, S. M. Nylon-MOF composites through postsynthetic polymerization. Angew. Chem., Int. Ed. 2019, 58, 2336–2340.

31

Nagata, S.; Kokado, K.; Sada, K. Metal-organic framework tethering pnipam for on-off controlled release in solution. Chem. Commun. 2015, 51, 8614–8617.

32

Lázaro, I. A.; Haddad, S.; Sacca, S.; Orellana-Tavra, C.; Fairen-Jimenez, D.; Forgan, R. S. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem 2017, 2, 561–578.

33

Venna, S. R.; Lartey, M.; Li, T.; Spore, A.; Kumar, S.; Nulwala, H. B.; Luebke, D. R.; Rosi, N. L.; Albenze, E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J. Mater. Chem. A 2015, 3, 5014–5022.

34

Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264.

35

McGuire, C. V.; Forgan, R. S. The surface chemistry of metal-organic frameworks. Chem. Commun. 2015, 51, 5199–5217.

36

Wang, S. Z.; Morris, W.; Liu, Y. Y.; McGuirk, C. M.; Zhou, Y.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. Surface-specific functionalization of nanoscale metal-organic frameworks. Angew. Chem., Int. Ed. 2015, 54, 14738–14742.

37

He, C. B.; Lu, K. D.; Lin, W. B. Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 2014, 136, 12253–12256.

38

He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

39

He, C. B.; Lu, K. D.; Liu, D. M.; Lin, W. B. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled sirnas to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 2014, 136, 5181–5184.

40

Rieter, W. J.; Taylor, K. M. L.; Lin, W. B. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129, 9852–9853.

41

Morris, W.; Wang, S. Z.; Cho, D.; Auyeung, E.; Li, P.; Farha, O. K.; Mirkin, C. A. Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal-organic framework. ACS Appl. Mater. Interfaces 2017, 9, 33413–33418.

42

Annapureddy, H. V. R.; Nune, S. K.; Motkuri, R. K.; McGrail, B. P.; Dang, L. X. A combined experimental and computational study on the stability of nanofluids containing metal organic frameworks. J. Phys. Chem. B 2015, 119, 8992–8999.

43

Fulvio, P. F.; Dai, S. Porous liquids: The next frontier. Chem 2020, 6, 3263–3287.

44

Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480.

45

Zhang, C. Y.; Han, C.; Sholl, D. S.; Schmidt, J. R. Computational characterization of defects in metal-organic frameworks: Spontaneous and water-induced point defects in ZIF-8. J. Phys. Chem. Lett. 2016, 7, 459–464.

46

Smith, S. J. D.; Konstas, K.; Lau, C. H.; Gozukara, Y. M.; Easton, C. D.; Mulder, R. J.; Ladewig, B. P.; Hill, M. R. Post-synthetic annealing: Linker self-exchange in UiO-66 and its effect on polymer-metal organic framework interaction. Cryst. Growth Des. 2017, 17, 4384–4392.

47

Zhou, H. C. J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

48

Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

49

Sánchez-Laínez, J.; Veiga, A.; Zornoza, B.; Balestra, S. R. G.; Hamad, S.; Ruiz-Salvador, A. R.; Calero, S.; Téllez, C.; Coronas, J. Tuning the separation properties of zeolitic imidazolate framework core-shell structures via post-synthetic modification. J. Mater. Chem. A 2017, 5, 25601–25608.

50

Gomes, M. C.; Pison, L.; Červinka, C.; Padua, A. Porous ionic liquids or liquid metal-organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 11909–11912.

51

Atilhan, M.; Cincotti, A.; Aparicio, S. Nanoscopic characterization of type II porous liquid and its use for CO2 absorption from molecular simulation. J. Mol. Liq. 2021, 330, 115660.

52

Zhang, H.; Dasbiswas, K.; Ludwig, N. B.; Han, G.; Lee, B.; Vaikuntanathan, S.; Talapin, D. V. Stable colloids in molten inorganic salts. Nature 2017, 542, 328–331.

53

Liu, H.; Pan, Y.; Liu, B.; Sun, C. Y.; Guo, P.; Gao, X. T.; Yang, L. Y.; Ma, Q. L.; Chen, G. J. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature. Sci. Rep. 2016, 6, 21114.

File
12274_2021_3862_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 June 2021
Revised: 19 August 2021
Accepted: 02 September 2021
Published: 26 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors acknowledge use of facilities within the Monash X-ray Platform and Monash Centre for Electron Microscopy.

Return