AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ observation of electrochemical Ostwald ripening during sodium deposition

Lin Geng1,§Qiunan Liu1,§Jingzhao Chen1Peng Jia1Hongjun Ye1Jitong Yan1,3Liqiang Zhang1( )Yongfu Tang1,3( )Jianyu Huang1,2( )
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China

§ Lin Geng and Qiunan Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Sodium (Na) metal batteries (SMBs) using Na anode are potential “beyond lithium” electrochemical technology for future energy storage applications. However, uncontrollable Na dendrite growth has plagued the application of SMBs. Understanding Na deposition mechanisms, particularly the early stage of Na deposition kinetics, is critical to enable the SMBs. In this context, we conducted in situ observations of the early stage of electrochemical Na deposition. We revealed an important electrochemical Ostwald ripening (EOR) phenomenon which dictated the early stage of Na deposition. Namely, small Na nanocrystals were nucleated randomly, which then grew. During growth, smaller Na nanocrystals were contained by bigger ones via EOR. We observed two types of EOR with one involving only electrochemical reaction driven by electrochemical potential difference between bigger and smaller nanocrystals; while the other being dominated by mass transport governed by surface energy minimization. The results provide new understanding to the Na deposition mechanism, which may be useful for the development of SMB for energy storage applications.

References

1

Redmond, P. L.; Hallock, A. J.; Brus, L. E. Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates. Nano Lett 2005, 5, 131–135.

2

Schröder, A.; Fleig, J.; Gryaznov, D.; Maier, J.; Sitte, W. Quantitative model of electrochemical Ostwald ripening and its application to the time-dependent electrode potential of nanocrystalline metals. J. Phys. Chem. B 2006, 110, 12274–12280.

3

Wang, F. D.; Richards, V. N.; Shields, S. P.; Buhro, W. E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 2014, 26, 5–21.

4

Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

5

Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.

6

Parthasarathy, P.; Virkar, A. V. Electrochemical Ostwald ripening of Pt and Ag catalysts supported on carbon. J. Power Sources 2013, 234, 82–90.

7

Ustarroz, J.; Hammons, J. A.; Altantzis, T.; Hubin, A.; Bals, S.; Terryn, H. A generalized electrochemical aggregative growth mechanism. J. Am. Chem. Soc. 2013, 135, 11550–11561.

8

Liu, X.; Stroppa, D. G.; Heggen, M.; Ermolenko, Y.; Offenhäusser, A.; Mourzina, Y. Electrochemically induced Ostwald ripening in Au/TiO2 nanocomposite. J. Phys. Chem. C 2015, 119, 10336–10344.

9

Sui, J. S.; Yan, J. Y.; Wang, K.; Luo, G. S. Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Res. 2020, 13, 2837–2846.

10

Henglein, A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 1993, 97, 5457–5471.

11

Plieth, W. J. Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced Raman scattering. J. Phys. Chem. 1982, 86, 3166–3170.

12

Yang, F.; Abadia, M.; Chen, C. Q.; Wang, W. K.; Li, L.; Zhang, L. B.; Rogero, C.; Chuvilin, A.; Knez, M. Design of active and stable oxygen reduction reaction catalysts by embedding CoxOy nanoparticles into nitrogen-doped carbon. Nano Res. 2017, 10, 97–107.

13

Yu, Z. J.; Jiao, S. Q.; Li, S. J.; Chen, X. D.; Song, W. L.; Teng, T.; Tu, J. G.; Chen, H. S.; Zhang, G. H.; Fang, D. N. Flexible stable solid-state Al-ion batteries. Adv. Funct. Mater. 2019, 29, 1806799.

14

Wang, S.; Jiao, S. Q.; Tian, D. H.; Chen, H. S.; Jiao, H. D.; Tu, J. G.; Liu, Y. J.; Fang, D. N. A novel ultrafast rechargeable multi-ions battery. Adv. Mater. 2017, 29, 1606349.

15

Vittori Antisari, M.; Marazzi, R.; Krsmanovic, R. Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 2003, 41, 2393–2401.

16

Liu, Q. N.; Zhang, L. Q.; Sun, H. M.; Geng, L.; Li, Y. S.; Tang, Y. S.; Jia, P.; Wang, Z. F.; Dai, Q. S.; Shen, T. D. et al. In situ observation of sodium dendrite growth and concurrent mechanical property measurements using an environmental transmission electron microscopy-atomic force microscopy (ETEM-AFM) platform. ACS Energy Lett 2020, 5, 2546–2559.

17

Shi, L.; Sheng, L. M.; Yu, L. M.; An, K.; Ando, Y.; Zhao, X. L. Ultra-thin double-walled carbon nanotubes: A novel nanocontainer for preparing atomic wires. Nano Res. 2011, 4, 759–766.

18

Wang, Z. F.; Tang, Y. F.; Zhang, L. Q.; Li, M.; Shan, Z. W.; Huang, J. Y. In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures. Small 2020, 16, 2001899.

19

Chen, Y. M.; Wang, Z. Q.; Li, X. Y.; Yao, X. H.; Wang, C.; Li, Y. T.; Xue, W. J.; Yu, D. W.; Kim, S. Y.; Yang, F. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 2020, 578, 251–255.

20

Zhang, L. Q.; Yang, T. T.; Du, C. C.; Liu, Q. N.; Tang, Y. S.; Zhao, J.; Wang, B. L.; Chen, T. W.; Sun, Y.; Jia, P. et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up. Nat. Nanotechnol. 2020, 15, 94–98.

21

Liu, Q. N.; Geng, L.; Yang, T. T.; Tang, Y. F.; Jia, P.; Li, Y. S.; Li, H.; Shen, T. D.; Zhang, L. Q.; Huang, J. Y. In-situ imaging electrocatalysis in a Na-O2 battery with Au-coated MnO2 nanowires air cathode. Energy Storage Mater 2019, 19, 48–55.

22

Tang, Y. F.; Zhang, L. Q.; Chen, J. Z.; Sun, H. M.; Yang, T. T.; Liu, Q. N.; Huang, Q.; Zhu, T.; Huang, J. Y. Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy Environ. Sci. 2021, 14, 602–642.

23

Poindexter, F. E.; Kernaghan, M. Surface tension of sodium. Phys. Rev. 1929, 33, 837–843.

24

Bohdansky, J.; Schins, H. E. J. The surface tension of the alkali metals. J. Inorg. Nucl. Chem. 1967, 29, 2173–2179.

Nano Research
Pages 2650-2654
Cite this article:
Geng L, Liu Q, Chen J, et al. In situ observation of electrochemical Ostwald ripening during sodium deposition. Nano Research, 2022, 15(3): 2650-2654. https://doi.org/10.1007/s12274-021-3861-6
Topics:

903

Views

17

Crossref

16

Web of Science

17

Scopus

1

CSCD

Altmetrics

Received: 23 July 2021
Revised: 20 August 2021
Accepted: 02 September 2021
Published: 12 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return