Journal Home > Volume 15 , Issue 3

The use of functional nanoparticles as peroxidase-like (POD-like) catalyst has recently become a focus of research in cancer therapy. Phthalocyanine is a macrocyclic conjugated metal ligand, which is expected to achieve a high POD-like catalytic activity, generating free radicals and inhibiting the proliferation of cancer cells. In this paper, we synthesized phthalocyanine nanocrystals with different structures through noncovalent self-assembly confined within micro-emulsion droplets, and manganese phthalocyanine (MnPc) possessing a metal–N–C active center was used as the building block. These nano-assemblies exhibit shape-dependent POD-like catalytic activities, because the emulsifier and MnPc co-mixed assembly reduced the close packing between MnPc molecules and exposed more active sites. The assembly had a water-dispersed nanostructure, which is conducive to accumulation at tumor sites through the enhanced permeability and retention effect (EPR). Because of a highly efficient microenvironmental response, the assembly showed higher catalytic activity only emerged under the acidic tumor-like microenvironment, but caused less damage to normal tissues in biomedical applications. In vivo and in vitro catalytic therapy tests showed excellent anti-tumor effects. This work explored a new way for the application of metal–organic macromolecules such as MnPc as nanozymes for catalytic tumor therapy.


menu
Abstract
Full text
Outline
About this article

Self-assembled manganese phthalocyanine nanoparticles with enhanced peroxidase-like activity for anti-tumor therapy

Show Author's information Jinghan Wang1,2Shanqing Gao1Xiao Wang3Haozhen Zhang1Xitong Ren1Juewen Liu2( )Feng Bai1( )
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China

Abstract

The use of functional nanoparticles as peroxidase-like (POD-like) catalyst has recently become a focus of research in cancer therapy. Phthalocyanine is a macrocyclic conjugated metal ligand, which is expected to achieve a high POD-like catalytic activity, generating free radicals and inhibiting the proliferation of cancer cells. In this paper, we synthesized phthalocyanine nanocrystals with different structures through noncovalent self-assembly confined within micro-emulsion droplets, and manganese phthalocyanine (MnPc) possessing a metal–N–C active center was used as the building block. These nano-assemblies exhibit shape-dependent POD-like catalytic activities, because the emulsifier and MnPc co-mixed assembly reduced the close packing between MnPc molecules and exposed more active sites. The assembly had a water-dispersed nanostructure, which is conducive to accumulation at tumor sites through the enhanced permeability and retention effect (EPR). Because of a highly efficient microenvironmental response, the assembly showed higher catalytic activity only emerged under the acidic tumor-like microenvironment, but caused less damage to normal tissues in biomedical applications. In vivo and in vitro catalytic therapy tests showed excellent anti-tumor effects. This work explored a new way for the application of metal–organic macromolecules such as MnPc as nanozymes for catalytic tumor therapy.

Keywords: self-assembly, nanozymes, manganese phthalocyanine, peroxidase, catalytic therapy

References(62)

1

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

2

Gao, L. Z.; Yan, X. Y. Nanozymes: An emerging field bridging nanotechnology and biology. Sci. China Life Sci. 2016, 59, 400–402.

3

He, W. W.; Wamer, W.; Xia, Q. S.; Yin, J. J.; Fu, P. P. Enzyme-like activity of nanomaterials. J. Environ. Sci. Health, Part C:Environ. Carcinog. Ecotoxicol. Rev. 2014, 32, 186–211.

4

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

5

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

6

Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.

7

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

8

Li, Y. Q.; Liu, J. W. Nanozyme's catching up: Activity, specificity, reaction conditions and reaction types. Mater. Horiz. 2021, 8, 336–350.

9

Chang, Y. Y.; Gao, S.; Liu, M.; Liu, J. W. Designing signal-on sensors by regulating nanozyme activity. Anal. Methods 2020, 12, 4708–4723.

10

Chen, Z. J.; Huang, Z. C.; Sun, Y. M.; Xu, Z. L.; Liu, J. W. The most active oxidase-mimicking Mn2O3 nanozyme for biosensor signal generation. Chem. –Eur. J. 2021, 27, 9597–9604.

11

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

12

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

13

Wang, L. Y.; Huo, M. F.; Chen, Y.; Shi, J. L. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials 2018, 163, 1–13.

14

Liang, Q.; Xi, J. Q.; Gao, X. J.; Zhang, R. F.; Yang, Y. L.; Gao, X. F.; Yan, X. Y.; Gao, L. Z.; Fan, K. L. A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today 2020, 35, 100935.

15

Chen, Q. S.; Liu, Y. B.; Liu, J. B.; Liu, J. W. Liposome-boosted peroxidase-mimicking nanozymes breaking the pH limit. Chem. –Eur. J. 2020, 26, 16659–16665.

16

Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer 2011, 11, 671–677.

17

Bai, J.; Jia, X. D.; Zhen, W. Y.; Cheng, W. L.; Jiang, X. A facile ion-doping strategy to regulate tumor microenvironments for enhanced multimodal tumor theranostics. J. Am. Chem. Soc. 2018, 140, 106–109.

18

Jana, D.; Wang, D. D.; Bindra, A. K.; Guo, Y.; Liu, J. W.; Zhao, Y. L. Ultrasmall alloy nanozyme for ultrasound- and near-infrared light-promoted tumor ablation. ACS Nano 2021, 15, 7774–7782.

19

Cheng, G. H.; Zong, W.; Guo, H. Z.; Li, F. Y.; Zhang, X.; Yu, P.; Ren, F. X.; Zhang, X. L.; Shi, X. E.; Gao, F. et al. Programmed size-changeable nanotheranostic agents for enhanced imaging-guided chemo/photodynamic combination therapy and fast elimination. Adv. Mater. 2021, 33, 2100398.

20
Jiao, L.; Ye, W.; Kang, Y. K.; Zhang, Y.; Xu, W. Q.; Wu, Y.; Gu, W. L.; Song, W. Y.; Xiong, Y. J.; Zhu, C. Z. Atomically dispersed N-coordinated Fe-Fe dual-sites with enhanced enzyme-like activities. Nano Res., in press, https://doi.org/10.1007/s12274-021-3581-y.
DOI
21

Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. Cancer treatment through nanoparticle-facilitated fenton reaction. ACS Nano 2018, 12, 11819–11837.

22

Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.

23

Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

24

Lu, W. H.; Chen, J.; Kong, L. S.; Zhu, F.; Feng, Z. Y.; Zhan, J. H. Oxygen vacancies modulation Mn3O4 nanozyme with enhanced oxidase-mimicking performance for L-cysteine detection. Sens. Actuators B:Chem. 2021, 333, 129560.

25

Yang, L. F.; Ren, C. C.; Xu, M.; Song, Y. L.; Lu, Q. L.; Wang, Y. L.; Zhu, Y.; Wang, X. X.; Li, N. Rod-shape inorganic biomimetic mutual-reinforcing MnO2-Au nanozymes for catalysis-enhanced hypoxic tumor therapy. Nano Res. 2020, 13, 2246–2258.

26

Waldron, K. J.; Rutherford, J. C.; Ford, D.; Robinson, N. J. Metalloproteins and metal sensing. Nature 2009, 460, 823–830.

27

Lv, M. Z.; Chen, M. X.; Zhang, R.; Zhang, W.; Wang, C. G.; Zhang, Y.; Wei, X. M.; Guan, Y. K.; Liu, J. J.; Feng, K. C. et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020, 30, 966–979.

28

Signorella, S.; Palopoli, C.; Ledesma, G. Rationally designed mimics of antioxidant manganoenzymes: Role of structural features in the quest for catalysts with catalase and superoxide dismutase activity. Coord. Chem. Rev. 2018, 365, 75–102.

29

Zhang, J. Y.; Lu, X. M.; Tang, D. D.; Wu, S. H.; Hou, X. D.; Liu, J. W.; Wu, P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 40808–40814.

30

Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X. Y.; Nie, G. H.; Liang, M. M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583.

31

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

32

Zhao, R. S.; Zhao, X.; Gao, X. F. Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides. Chem. –Eur. J. 2015, 21, 960–964.

33

Hiroto, S.; Miyake, Y.; Shinokubo, H. Synthesis and functionalization of porphyrins through organometallic methodologies. Chem. Rev. 2017, 117, 2910–3043.

34

Park, J. M.; Hong, K. I.; Lee, H.; Jang, W. D. Bioinspired applications of porphyrin derivatives. Acc. Chem. Res. 2021, 54, 2249–2260.

35

Gao, Z. G.; Li, Y. J.; Zhang, Y.; Cheng, K. W.; An, P. J.; Chen, F. H.; Chen, J.; You, C. Q.; Zhu, Q.; Sun, B. W. Biomimetic platinum nanozyme immobilized on 2D metal–organic frameworks for mitochondrion-targeting and oxygen self-supply photodynamic therapy. ACS Appl. Mater. Interfaces 2020, 12, 1963–1972.

36

Ling, P. H.; Cheng, S.; Chen, N.; Qian, C. H.; Gao, F. Nanozyme-modified metal–organic frameworks with multienzymes activity as biomimetic catalysts and electrocatalytic interfaces. ACS Appl. Mater. Interfaces 2020, 12, 17185–17192.

37

Cao-Milán, R.; Gopalakrishnan, S.; He, L. D.; Huang, R.; Wang, L. S.; Castellanos, L.; Luther, D. C.; Landis, R. F.; Makabenta, J. M. V.; Li, C. H. et al. Thermally gated bio-orthogonal nanozymes with supramolecularly confined porphyrin catalysts for antimicrobial uses. Chem 2020, 6, 1113–1124.

38

Zheng, B. D.; He, Q. X.; Li, X. S.; Yoon, J.; Huang, J. D. Phthalocyanines as contrast agents for photothermal therapy. Coord. Chem. Rev. 2021, 426, 213548.

39

Lo, P. C.; Rodríguez-Morgade, M. S.; Pandey, R. K.; Ng, D. K. P.; Torres, T.; Dumoulin, F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 2020, 49, 1041–1056.

40

Shi, W. J.; Ng, D. K. P.; Zhao, S. R.; Lo, P. C. A phthalocyanine-based glutathione-activated photosensitizer with a ferrocenyl boron dipyrromethene dark quencher for photodynamic therapy. ChemPhotoChem 2019, 3, 1004–1013.

41

Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione "AND" H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.

42

Xu, B. L.; Cui, Y.; Wang, W. W.; Li, S. S.; Lyu, C. L.; Wang, S.; Bao, W. E.; Wang, H. Y.; Qin, M.; Liu, Z. et al. Immunomodulation-enhanced nanozyme-based tumor catalytic therapy. Adv. Mater. 2020, 32, 2003563.

43

Wang, J. F.; Zhong, Y.; Wang, X.; Yang, W. T.; Bai, F.; Zhang, B. B.; Alarid, L.; Bian, K. F.; Fan, H. Y. pH-dependent assembly of porphyrin–silica nanocomposites and their application in targeted photodynamic therapy. Nano Lett. 2017, 17, 6916–6921.

44

Wang, D.; Niu, L. J.; Qiao, Z. Y.; Cheng, D. B.; Wang, J. F.; Zhong, Y.; Bai, F.; Wang, H.; Fan, H. Y. Synthesis of self-assembled porphyrin nanoparticle photosensitizers. ACS Nano 2018, 12, 3796–3803.

45

Wang, X.; Wang, J. F.; Wang, J. H.; Zhong, Y.; Han, L. L.; Yan, J. L.; Duan, P. C.; Shi, B. Y.; Bai, F. Noncovalent self-assembled smart gold(III) porphyrin nanodrug for synergistic chemo-photothermal therapy. Nano Lett. 2021, 21, 3418–3425.

46

Zhong, Y.; Wang, J. F.; Zhang, R. F.; Wei, W. B.; Wang, H. M.; Lu, X. P.; Bai, F.; Wu, H. M.; Haddad, R.; Fan, H. Y. Morphology-controlled self-assembly and synthesis of photocatalytic nanocrystals. Nano Lett. 2014, 14, 7175–7179.

47

Zhang, N.; Wang, L.; Wang, H. M.; Cao, R. H.; Wang, J. F.; Bai, F.; Fan, H. Y. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560–566.

48

Zhong, Y.; Liu, S. H.; Wang, J. F.; Zhang, W. Z.; Tian, T.; Sun, J. J.; Bai, F. Self-assembled supramolecular nanostructure photosensitizers for photocatalytic hydrogen evolution. APL Mater. 2020, 8, 120706.

49

Li, S. S.; Shang, L.; Xu, B. L.; Wang, S. H.; Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem. 2019, 131, 12754–12761.

50

Sun, J. X.; Yuan, Y. P.; Qiu, L. G.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans. 2012, 41, 6756–6763.

51

Xing, H.; Ma, H.; Fu, Y.; Xue, M.; Zhang, X.; Dong, X.; Zhang, X. Preparation of g-C3N4/ZnO composites and their enhanced photocatalytic activity. Mater. Technol. 2015, 30, 122–127.

52

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

53

Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.

54

He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.

55

Chen, M. X.; Zhu, M. Z.; Zuo, M.; Chu, S. Q.; Zhang, J.; Wu, Y. E.; Liang, H. W.; Feng, X. L. Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles. Angew. Chem. Int. Edit. 2020, 132, 1644–1650.

56

Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.

57

Tabor, E.; Połtowicz, J.; Pamin, K.; Basąg, S.; Kubiak, W. Influence of substituents in meso-aryl groups of iron μ-oxo porphyrins on their catalytic activity in the oxidation of cycloalkanes. Polyhedron 2016, 119, 342–349.

58

Xie, J. F.; Ma, G. F.; Ouyang, X. P.; Zhao, L. S.; Qiu, X. Q. Metalloporphyrin as a biomimetic catalyst for the catalytic oxidative degradation of lignin to produce aromatic monomers. Waste Biomass Valor. 2020, 11, 4481–4489.

59

Antonangelo, A. R.; Westrup, K. C. M.; Burt, L. A.; Bezzu, C. G.; Malewschik, T.; Machado, G. S.; Nunes, F. S.; McKeown, N. B.; Nakagaki, S. Synthesis, crystallographic characterization and homogeneous catalytic activity of novel unsymmetric porphyrins. RSC Adv. 2017, 7, 50610–50618.

60

Tovmasyan, A.; Carballal, S.; Ghazaryan, R.; Melikyan, L.; Weitner, T.; Maia, C. G. C.; Reboucas, J. S.; Radi, R.; Spasojevic, I.; Benov, L. et al. Rational design of superoxide dismutase (SOD) mimics: The evaluation of the therapeutic potential of new cationic mn porphyrins with linear and cyclic substituents. Inorg. Chem. 2014, 53, 11467–11483.

61

Miriyala, S.; Spasojevic, I.; Tovmasyan, A.; Salvemini, D.; Vujaskovic, Z.; St Clair, D.; Batinic-Haberle, I. Manganese superoxide dismutase, MnSOD and its mimics. Biochim. Biophys. Acta (BBA)-Mol Basis Dis 2012, 1822, 794–814.

62

Wang, X. H.; Li, L.; Song, F. Interplay of nanoparticle properties during endocytosis. Crystals 2021, 11, 728.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 July 2021
Revised: 21 August 2021
Accepted: 29 August 2021
Published: 29 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771055 and U1604139), the Zhongyuan High Level Talents Special Support Plan (No. 204200510010), and the Scientific and Technological Innovation Team in University of Henan Province (No. 20IRTSTHN001). J. Wang was supported by Henan University to visit the University of Waterloo.

Return