Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The use of functional nanoparticles as peroxidase-like (POD-like) catalyst has recently become a focus of research in cancer therapy. Phthalocyanine is a macrocyclic conjugated metal ligand, which is expected to achieve a high POD-like catalytic activity, generating free radicals and inhibiting the proliferation of cancer cells. In this paper, we synthesized phthalocyanine nanocrystals with different structures through noncovalent self-assembly confined within micro-emulsion droplets, and manganese phthalocyanine (MnPc) possessing a metal–N–C active center was used as the building block. These nano-assemblies exhibit shape-dependent POD-like catalytic activities, because the emulsifier and MnPc co-mixed assembly reduced the close packing between MnPc molecules and exposed more active sites. The assembly had a water-dispersed nanostructure, which is conducive to accumulation at tumor sites through the enhanced permeability and retention effect (EPR). Because of a highly efficient microenvironmental response, the assembly showed higher catalytic activity only emerged under the acidic tumor-like microenvironment, but caused less damage to normal tissues in biomedical applications. In vivo and in vitro catalytic therapy tests showed excellent anti-tumor effects. This work explored a new way for the application of metal–organic macromolecules such as MnPc as nanozymes for catalytic tumor therapy.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.
Gao, L. Z.; Yan, X. Y. Nanozymes: An emerging field bridging nanotechnology and biology. Sci. China Life Sci. 2016, 59, 400–402.
He, W. W.; Wamer, W.; Xia, Q. S.; Yin, J. J.; Fu, P. P. Enzyme-like activity of nanomaterials. J. Environ. Sci. Health, Part C:Environ. Carcinog. Ecotoxicol. Rev. 2014, 32, 186–211.
Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.
Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.
Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.
Li, Y. Q.; Liu, J. W. Nanozyme's catching up: Activity, specificity, reaction conditions and reaction types. Mater. Horiz. 2021, 8, 336–350.
Chang, Y. Y.; Gao, S.; Liu, M.; Liu, J. W. Designing signal-on sensors by regulating nanozyme activity. Anal. Methods 2020, 12, 4708–4723.
Chen, Z. J.; Huang, Z. C.; Sun, Y. M.; Xu, Z. L.; Liu, J. W. The most active oxidase-mimicking Mn2O3 nanozyme for biosensor signal generation. Chem. –Eur. J. 2021, 27, 9597–9604.
Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.
Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.
Wang, L. Y.; Huo, M. F.; Chen, Y.; Shi, J. L. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials 2018, 163, 1–13.
Liang, Q.; Xi, J. Q.; Gao, X. J.; Zhang, R. F.; Yang, Y. L.; Gao, X. F.; Yan, X. Y.; Gao, L. Z.; Fan, K. L. A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today 2020, 35, 100935.
Chen, Q. S.; Liu, Y. B.; Liu, J. B.; Liu, J. W. Liposome-boosted peroxidase-mimicking nanozymes breaking the pH limit. Chem. –Eur. J. 2020, 26, 16659–16665.
Webb, B. A.; Chimenti, M.; Jacobson, M. P.; Barber, D. L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer 2011, 11, 671–677.
Bai, J.; Jia, X. D.; Zhen, W. Y.; Cheng, W. L.; Jiang, X. A facile ion-doping strategy to regulate tumor microenvironments for enhanced multimodal tumor theranostics. J. Am. Chem. Soc. 2018, 140, 106–109.
Jana, D.; Wang, D. D.; Bindra, A. K.; Guo, Y.; Liu, J. W.; Zhao, Y. L. Ultrasmall alloy nanozyme for ultrasound- and near-infrared light-promoted tumor ablation. ACS Nano 2021, 15, 7774–7782.
Cheng, G. H.; Zong, W.; Guo, H. Z.; Li, F. Y.; Zhang, X.; Yu, P.; Ren, F. X.; Zhang, X. L.; Shi, X. E.; Gao, F. et al. Programmed size-changeable nanotheranostic agents for enhanced imaging-guided chemo/photodynamic combination therapy and fast elimination. Adv. Mater. 2021, 33, 2100398.
Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. Cancer treatment through nanoparticle-facilitated fenton reaction. ACS Nano 2018, 12, 11819–11837.
Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.
Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.
Lu, W. H.; Chen, J.; Kong, L. S.; Zhu, F.; Feng, Z. Y.; Zhan, J. H. Oxygen vacancies modulation Mn3O4 nanozyme with enhanced oxidase-mimicking performance for L-cysteine detection. Sens. Actuators B:Chem. 2021, 333, 129560.
Yang, L. F.; Ren, C. C.; Xu, M.; Song, Y. L.; Lu, Q. L.; Wang, Y. L.; Zhu, Y.; Wang, X. X.; Li, N. Rod-shape inorganic biomimetic mutual-reinforcing MnO2-Au nanozymes for catalysis-enhanced hypoxic tumor therapy. Nano Res. 2020, 13, 2246–2258.
Waldron, K. J.; Rutherford, J. C.; Ford, D.; Robinson, N. J. Metalloproteins and metal sensing. Nature 2009, 460, 823–830.
Lv, M. Z.; Chen, M. X.; Zhang, R.; Zhang, W.; Wang, C. G.; Zhang, Y.; Wei, X. M.; Guan, Y. K.; Liu, J. J.; Feng, K. C. et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020, 30, 966–979.
Signorella, S.; Palopoli, C.; Ledesma, G. Rationally designed mimics of antioxidant manganoenzymes: Role of structural features in the quest for catalysts with catalase and superoxide dismutase activity. Coord. Chem. Rev. 2018, 365, 75–102.
Zhang, J. Y.; Lu, X. M.; Tang, D. D.; Wu, S. H.; Hou, X. D.; Liu, J. W.; Wu, P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 40808–40814.
Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X. Y.; Nie, G. H.; Liang, M. M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583.
Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.
Zhao, R. S.; Zhao, X.; Gao, X. F. Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides. Chem. –Eur. J. 2015, 21, 960–964.
Hiroto, S.; Miyake, Y.; Shinokubo, H. Synthesis and functionalization of porphyrins through organometallic methodologies. Chem. Rev. 2017, 117, 2910–3043.
Park, J. M.; Hong, K. I.; Lee, H.; Jang, W. D. Bioinspired applications of porphyrin derivatives. Acc. Chem. Res. 2021, 54, 2249–2260.
Gao, Z. G.; Li, Y. J.; Zhang, Y.; Cheng, K. W.; An, P. J.; Chen, F. H.; Chen, J.; You, C. Q.; Zhu, Q.; Sun, B. W. Biomimetic platinum nanozyme immobilized on 2D metal–organic frameworks for mitochondrion-targeting and oxygen self-supply photodynamic therapy. ACS Appl. Mater. Interfaces 2020, 12, 1963–1972.
Ling, P. H.; Cheng, S.; Chen, N.; Qian, C. H.; Gao, F. Nanozyme-modified metal–organic frameworks with multienzymes activity as biomimetic catalysts and electrocatalytic interfaces. ACS Appl. Mater. Interfaces 2020, 12, 17185–17192.
Cao-Milán, R.; Gopalakrishnan, S.; He, L. D.; Huang, R.; Wang, L. S.; Castellanos, L.; Luther, D. C.; Landis, R. F.; Makabenta, J. M. V.; Li, C. H. et al. Thermally gated bio-orthogonal nanozymes with supramolecularly confined porphyrin catalysts for antimicrobial uses. Chem 2020, 6, 1113–1124.
Zheng, B. D.; He, Q. X.; Li, X. S.; Yoon, J.; Huang, J. D. Phthalocyanines as contrast agents for photothermal therapy. Coord. Chem. Rev. 2021, 426, 213548.
Lo, P. C.; Rodríguez-Morgade, M. S.; Pandey, R. K.; Ng, D. K. P.; Torres, T.; Dumoulin, F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 2020, 49, 1041–1056.
Shi, W. J.; Ng, D. K. P.; Zhao, S. R.; Lo, P. C. A phthalocyanine-based glutathione-activated photosensitizer with a ferrocenyl boron dipyrromethene dark quencher for photodynamic therapy. ChemPhotoChem 2019, 3, 1004–1013.
Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione "AND" H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857.
Xu, B. L.; Cui, Y.; Wang, W. W.; Li, S. S.; Lyu, C. L.; Wang, S.; Bao, W. E.; Wang, H. Y.; Qin, M.; Liu, Z. et al. Immunomodulation-enhanced nanozyme-based tumor catalytic therapy. Adv. Mater. 2020, 32, 2003563.
Wang, J. F.; Zhong, Y.; Wang, X.; Yang, W. T.; Bai, F.; Zhang, B. B.; Alarid, L.; Bian, K. F.; Fan, H. Y. pH-dependent assembly of porphyrin–silica nanocomposites and their application in targeted photodynamic therapy. Nano Lett. 2017, 17, 6916–6921.
Wang, D.; Niu, L. J.; Qiao, Z. Y.; Cheng, D. B.; Wang, J. F.; Zhong, Y.; Bai, F.; Wang, H.; Fan, H. Y. Synthesis of self-assembled porphyrin nanoparticle photosensitizers. ACS Nano 2018, 12, 3796–3803.
Wang, X.; Wang, J. F.; Wang, J. H.; Zhong, Y.; Han, L. L.; Yan, J. L.; Duan, P. C.; Shi, B. Y.; Bai, F. Noncovalent self-assembled smart gold(III) porphyrin nanodrug for synergistic chemo-photothermal therapy. Nano Lett. 2021, 21, 3418–3425.
Zhong, Y.; Wang, J. F.; Zhang, R. F.; Wei, W. B.; Wang, H. M.; Lu, X. P.; Bai, F.; Wu, H. M.; Haddad, R.; Fan, H. Y. Morphology-controlled self-assembly and synthesis of photocatalytic nanocrystals. Nano Lett. 2014, 14, 7175–7179.
Zhang, N.; Wang, L.; Wang, H. M.; Cao, R. H.; Wang, J. F.; Bai, F.; Fan, H. Y. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560–566.
Zhong, Y.; Liu, S. H.; Wang, J. F.; Zhang, W. Z.; Tian, T.; Sun, J. J.; Bai, F. Self-assembled supramolecular nanostructure photosensitizers for photocatalytic hydrogen evolution. APL Mater. 2020, 8, 120706.
Li, S. S.; Shang, L.; Xu, B. L.; Wang, S. H.; Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem. 2019, 131, 12754–12761.
Sun, J. X.; Yuan, Y. P.; Qiu, L. G.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans. 2012, 41, 6756–6763.
Xing, H.; Ma, H.; Fu, Y.; Xue, M.; Zhang, X.; Dong, X.; Zhang, X. Preparation of g-C3N4/ZnO composites and their enhanced photocatalytic activity. Mater. Technol. 2015, 30, 122–127.
Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.
Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.
He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.
Chen, M. X.; Zhu, M. Z.; Zuo, M.; Chu, S. Q.; Zhang, J.; Wu, Y. E.; Liang, H. W.; Feng, X. L. Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles. Angew. Chem. Int. Edit. 2020, 132, 1644–1650.
Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.
Tabor, E.; Połtowicz, J.; Pamin, K.; Basąg, S.; Kubiak, W. Influence of substituents in meso-aryl groups of iron μ-oxo porphyrins on their catalytic activity in the oxidation of cycloalkanes. Polyhedron 2016, 119, 342–349.
Xie, J. F.; Ma, G. F.; Ouyang, X. P.; Zhao, L. S.; Qiu, X. Q. Metalloporphyrin as a biomimetic catalyst for the catalytic oxidative degradation of lignin to produce aromatic monomers. Waste Biomass Valor. 2020, 11, 4481–4489.
Antonangelo, A. R.; Westrup, K. C. M.; Burt, L. A.; Bezzu, C. G.; Malewschik, T.; Machado, G. S.; Nunes, F. S.; McKeown, N. B.; Nakagaki, S. Synthesis, crystallographic characterization and homogeneous catalytic activity of novel unsymmetric porphyrins. RSC Adv. 2017, 7, 50610–50618.
Tovmasyan, A.; Carballal, S.; Ghazaryan, R.; Melikyan, L.; Weitner, T.; Maia, C. G. C.; Reboucas, J. S.; Radi, R.; Spasojevic, I.; Benov, L. et al. Rational design of superoxide dismutase (SOD) mimics: The evaluation of the therapeutic potential of new cationic mn porphyrins with linear and cyclic substituents. Inorg. Chem. 2014, 53, 11467–11483.
Miriyala, S.; Spasojevic, I.; Tovmasyan, A.; Salvemini, D.; Vujaskovic, Z.; St Clair, D.; Batinic-Haberle, I. Manganese superoxide dismutase, MnSOD and its mimics. Biochim. Biophys. Acta (BBA)-Mol Basis Dis 2012, 1822, 794–814.
Wang, X. H.; Li, L.; Song, F. Interplay of nanoparticle properties during endocytosis. Crystals 2021, 11, 728.