Journal Home > Volume 14 , Issue 11

Eliminating the usage of metal current collectors and binders in traditional battery electrode configuration is an effective strategy to significantly improve the capacities of lithium ion batteries (LIBs). Herein, we demonstrate the construction of porous vanadium nitride (VN) nanosheet network in situ grown on nitrogen-rich (N-rich) carbon textile (N-C@P-VN) as lightweight and binder-free anode for LIBs. The N-rich carbon textile is used both as the current collector and host to store Li+, thus improving the specific capacities of binder-free VN anode and meanwhile reducing the inert mass of the whole cell. Moreover, the open spaces in carbon textile and vertically aligned pores in VN nanosheet network can not only provide an expressway for Li+ and e transport, but also afford more active sites. As a result, the binder-free N-C@P-VN anode maintains a specific capacity of 1,040 mAh∙g−1 (or an areal capacity of 2.6 mAh∙cm−2) after 100 cycles at 0.1 mA∙cm−2 in half cell. Moreover, in an assembled N-C@P-VN//LiFePO4 full cell, it exhibits an areal capacity of 1.7 mAh∙cm−2 after 300 cycles at 0.1 C. The synergistic strategy of N-C substrate and porous VN network could be applied to guide rational design of similar N-C@nitride or sulfide hybrid systems with corresponding sulfur-doped carbon textile as the substrate.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Covalent interfacial coupling of vanadium nitride with nitrogen-rich carbon textile boosting its lithium storage performance as binder-free anode

Show Author's information Di Zhao1Jinwen Qin1Lirong Zheng2Donglei Guo3Jie Wang1Minhua Cao1( )
Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Function-oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, China

Abstract

Eliminating the usage of metal current collectors and binders in traditional battery electrode configuration is an effective strategy to significantly improve the capacities of lithium ion batteries (LIBs). Herein, we demonstrate the construction of porous vanadium nitride (VN) nanosheet network in situ grown on nitrogen-rich (N-rich) carbon textile (N-C@P-VN) as lightweight and binder-free anode for LIBs. The N-rich carbon textile is used both as the current collector and host to store Li+, thus improving the specific capacities of binder-free VN anode and meanwhile reducing the inert mass of the whole cell. Moreover, the open spaces in carbon textile and vertically aligned pores in VN nanosheet network can not only provide an expressway for Li+ and e transport, but also afford more active sites. As a result, the binder-free N-C@P-VN anode maintains a specific capacity of 1,040 mAh∙g−1 (or an areal capacity of 2.6 mAh∙cm−2) after 100 cycles at 0.1 mA∙cm−2 in half cell. Moreover, in an assembled N-C@P-VN//LiFePO4 full cell, it exhibits an areal capacity of 1.7 mAh∙cm−2 after 300 cycles at 0.1 C. The synergistic strategy of N-C substrate and porous VN network could be applied to guide rational design of similar N-C@nitride or sulfide hybrid systems with corresponding sulfur-doped carbon textile as the substrate.

Keywords: vanadium nitride, Li ion battery, binder-free anode, nitrogen-rich carbon textile, covalent interface

References(59)

1

Liao, Y. Q.; Wu, C.; Zhong, Y. T.; Chen, M.; Cai, L. Y.; Wang, H. R.; Liu, X.; Cao, G. Z.; Li, W. S. Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Res. 2020, 13, 188–195.

2

Deng, J. J.; Yu, X. L.; Qin, X. Y.; Zhou, D.; Zhang, L. H.; Duan, H.; Kang, F. Y.; Li, B. H.; Wang, G. X. Co-B Nanoflakes as multifunctional bridges in ZnCo2O4 micro-/nanospheres for superior lithium storage with boosted kinetics and stability. Adv. Energy Mater. 2019, 9, 1803612.

3

Xiang, T.; Tao, S.; Xu, W. Y.; Fang, Q.; Wu, C. Q.; Liu, D. B.; Zhou, Y.; Khalil, A.; Muhammad, Z.; Chu, W. S. et al. Stable 1T-MoSe2 and carbon nanotube hybridized flexible film: binder-free and high-performance li-ion anode. ACS Nano 2017, 11, 6483–6491.

4

Ji, J. Y.; Liu, J. L.; Lai, L. F.; Zhao, X.; Zhen, Y. D.; Lin, J. Y.; Zhu, Y. W.; Ji, H. X.; Zhang, L. L.; Ruoff, R. S. In situ activation of nitrogen-doped graphene anchored on graphite foam for a high-capacity anode. ACS Nano 2015, 9, 8609–8616.

5

Zhu, K. L.; Li, C. Y.; Jiao, Y. S.; Zhu, J. W.; Ren, H. T.; Luo, Y. F.; Fan, S. S.; Liu K. Free-standing hybrid films comprising of ultra-dispersed titania nanocrystals and hierarchical conductive network for excellent high rate performance of lithium storage. Nano Res. 2021, 14, 2301–2308.

6

Chen, L.; Liu, Y; Deng, Z. N.; Jiang, H.; Li, C. Z. Edge-enriched MoS2@C/rGO film as self-standing anodes for high-capacity and long-life lithium-ion batteries. Sci. China Mater. 2021, 64, 96–104.

7

Yue, Y.; Liang, H. 3D current collectors for lithium-ion batteries: A topical review. Small Methods 2018, 2, 1800056.

8

Yang, Y.; Yuan, W.; Zhang X. Q.; Ke, Y. Z.; Qiu, Z. Q.; Luo, J.; Tang, Y.; Wang, C.; Yuan, Y. H.; Huang, Y. A review on structuralized current collectors for high-performance lithium-ion battery anodes. Appl. Energy 2020, 276, 115464.

9

Lu, L. Q.; De Hosson, J. T. M.; Pei, Y. T. Three-dimensional micron-porous graphene foams for lightweight current collectors of lithium-sulfur batteries. Carbon 2019, 144, 713–723.

10

Wang, K.; Luo, S.; Wu, Y.; He, X. F.; Zhao, F.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 2013, 23, 846–853.

11

Yuan, W.; Wang, B. Y.; Wu, H.; Xiang, M. W.; Wang, Q.; Liu, H.; Zhang, Y.; Liu, H. K.; Dou, S. X. A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries. J. Power Sources 2018, 379, 10–19.

12

Yue, L. C.; Ma, C. Q.; Yan, S. H.; Wu, Z. G.; Zhao, W. X.; Liu, Q.; Luo, Y. L.; Zhong, B. H.; Zhang, F.; Liu, Y. et al. Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. Nano Res. 2021.

13

Balogun, M. S.; Yu, M. H.; Huang, Y. C.; Li, C.; Fang, P. P.; Liu, Y.; Lu, X. H.; Tong, Y. X. Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy 2015, 11, 348–355.

14

Wang, R. T.; Lang, J. W.; Zhang, P.; Lin, Z. Y.; Yan, X. B. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv. Funct. Mater. 2015, 25, 2270–2278.

15

Balogun, M. S.; Qiu, W. T.; Wang, W.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 2015, 3, 1364–1387.

16

Sun, Q.; Fu, Z. W. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries. Electrochim. Acta 2008, 54, 403–409.

17

Zhang, K. J.; Wang, H. B.; He, X. Q.; Liu, Z. H.; Wang, L.; Gu, L.; Xu, H. X.; Han, P. X.; Dong S. M.; Zhang, C. J. et al. A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. J. Mater. Chem. 2011, 21, 11916–11922.

18

Ghimbeu, C. M.; Raymundo-Piñero, E.; Fioux, P.; Béguin, F.; Vix-Guterl, C. Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. J. Mater. Chem. 2011, 21, 13268–13275.

19

Kundu, D.; Krumeich, F.; Fotedar, R.; Nesper, R. A nanocrystalline nitride as an insertion anode for Li-ion batteries. J. Power Sources 2015, 278, 608–613.

20

Zhao, D.; Cui, Z. T.; Wang, S. G.; Qin, J. W.; Cao, M. H. VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 7914–7923.

21

Zou, R. J.; Zhang, Z. Y.; Yuen, M. F.; Sun, M. L.; Hu, J. Q.; Lee, C. S.; Zhang, W. J. Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries. NPG Asia Mater. 2015, 7, e195.

22

Long, H.; Shi, T. L.; Hu, H.; Jiang, S. L.; Xi, S.; Tang, Z. R. Growth of hierarchal mesoporous NiO nanosheets on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. Sci. Rep. 2014, 4, 7413.

23

Sun, Y. M.; Hu, X. L.; Yu, J. C.; Li, Q.; Luo, W.; Yuan, L. X.; Zhang, W. X.; Huang, Y. H. Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2870–2877.

24

Li, Z.; Xu, Z. W.; Tan, X. H.; Wang, H. L.; Holt, C. M. B.; Stephenson, T.; Olsen, B. C.; Mitlin, D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 2013, 6, 871–878.

25

Sun, X. M.; Li, Y. D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 597–601.

26

Zhu, J. X.; Sakaushi, K.; Clavel, G.; Shalom, M.; Antonietti, M.; Fellinger, T. P. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 2015, 137, 5480–5485.

27

Zhao, X. W.; Wu, Y. Z.; Wang, Y. S.; Wu, H. S.; Yang, Y. W.; Wang, Z. P.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Res. 2020, 13, 1044–1052.

28

Huang, P. F.; Zhang, S. L.; Ying, H. J.; Yang, W. T.; Wang, J. L.; Guo, R. N.; Han, W. Q. Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 2021, 14, 1218–1227.

29

Wu, R.; Zhang, J. F.; Shi, Y. M.; Liu, D. L.; Zhang, B. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 6983–6986.

30

Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

31

Xie, J.; Sun, L.; Liu, Y. X.; Xi, X. G.; Chen, R. Y.; Jin, Z. SiOx/C-Ag nanosheets derived from Zintl phase CaSi2 via a facile redox reaction for high performance lithium storage. Nano Res. 2021.

32

Choi, D.; Blomgren, G. E.; Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 2006, 18, 1178–1182.

33

Fechler, N.; Fellinger, T. P.; Antonietti, M. Template-free one-pot synthesis of porous binary and ternary metal nitride@N-doped carbon composites from ionic liquids. Chem. Mater. 2012, 24, 713–719.

34

Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.

35

Zhao, D.; Cao, M. H. Constructing highly graphitized carbon-wrapped Li3VO4 nanoparticles with hierarchically porous structure as a long life and high capacity anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 25084–25093.

36

Ehlert, C.; Unger, W. E. S.; Saalfrank, P. C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory. Phys. Chem. Chem. Phys. 2014, 16, 14083–14095.

37

Hou, Y.; Wen, Z. H.; Cui, S. M.; Ci, S. Q.; Mao, S.; Chen, J. H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882.

38

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.

39

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

40

Kapoor, R.; Oyama, S. T.; Friihberger, B.; DeVries, B. D.; Chen, J. G. Characterization of early transition metal carbides and nitrides by NEXAFS. Catal. Lett. 1995, 34, 179–189.

41

Huguenin, F.; Giz, M. J.; Ticianelli, E. A.; Torresi, R. M. Structure and properties of a nanocomposite formed by vanadium pentoxide containing poly (N-propane sulfonic acid aniline). J. Power Sources 2001, 103, 113–119.

42

Han, Z. Y.; Li, X. Y.; Li, Q.; Li, H. S.; Xu, J.; Li, N.; Zhao, G. X.; Wang, X.; Li, H. L.; Li, S. D. Construction of the POMOF@polypyrrole composite with enhanced ion diffusion and capacitive contribution for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 6265–6275.

43

Zhao, D.; Xiao, Y.; Wang, X.; Gao, Q.; Cao, M. H. Ultra-high lithium storage capacity achieved by porous ZnFe2O4/α-Fe2O3 micro-octahedrons. Nano Energy 2014, 7, 124–133.

44

Gaikwad, A. M.; Khau, B. V.; Davies, G.; Hertzberg, B.; Steingart, D. A.; Arias, A. C. A high areal capacity flexible lithium-ion battery with a strain-compliant design. Adv. Energy Mater. 2015, 5, 1401389.

45

Li, X. W.; Yang, Z. B.; Fu, Y. J.; Qiao, L.; Li, D.; Yue, H. W.; He, D. Y. Germanium anode with excellent lithium storage performance in a germanium/lithium-cobalt oxide lithium-ion battery. ACS Nano 2015, 9, 1858–1867.

46

Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901–4906.

47

Luo, S.; Wang, K.; Wang, J. P.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv. Mater. 2012, 24, 2294–2298.

48

Cao, K. Z.; Jiao, L. F.; Liu, H. Q.; Liu, Y. C.; Wang, Y. J.; Guo, Z. P.; Yuan, H. T. 3D hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1401421.

49

Wang, W.; Sun, Y.; Liu, B.; Wang, S. G.; Cao, M. H. Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 2015, 91, 56–65.

50

Vargas, O.; Caballero, Á.; Morales, J. Enhanced electrochemical performance of maghemite/graphene nanosheets composite as electrode in half and full Li-ion cells. Electrochim. Acta 2014, 130, 551–558.

51

Koo, M.; Park, K. I.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 2012, 12, 4810–4816.

52

Zheng, J. C.; Han, Y. D.; Zhang, B.; Shen, C.; Ming, L.; Ou, X.; Zhang, J. F. Electrochemical properties of VPO4/C nanosheets and microspheres as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 6223–6226.

53

Wang. X.; Li. X. Y.; Li. Q.; Li, H. S.; Xu, J.; Wang, H.; Zhao, G. X.; Lu, L. S.; Lin, X. Y.; Li, H. L. et al. Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 2018, 10, 46.

54

Huang, S. Z.; Zhang, L.; Lu, X. Y.; Liu, L. F.; Liu, L. X.; Sun, X. L.; Yin, Y.; Oswald, S.; Zou, Z. Y.; Ding, F. et al. Tunable pseudocapacitance in 3D TiO2−δ nanomembranes enabling superior lithium storage performance. ACS Nano 2017, 11, 821–830.

55

Xie, X.; Hu, L. B.; Pasta, M.; Wells, G. F.; Kong, D. S.; Criddle, C. S.; Cui, Y. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett. 2010, 11, 291–296.

56

Zhang, K. Y.; Lin, Y. C.; Chen, L. F.; Huang, J.; Wang, L.; Peng, M. K.; Tang, X. N.; Hu, T.; Yuan, K.; Chen, Y. W. Enabling 2.4-V aqueous supercapacitors through the rational design of an integrated electrode of hollow vanadium trioxide/carbon nanospheres. Sci. China Mater. 2021, 64, 2163–2172.

57

Zhao, C. T.; Yu, C.; Zhang, M. D.; Huang, H. W.; Li, S. F.; Han, X. T.; Liu, Z. B.; Yang, J.; Xiao, W.; Liang, J. N. et al. Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv. Energy Mater. 2017, 7, 1602880.

58

Long, B.; Balogun, M. S.; Luo, L.; Qiu, W. T.; Luo, Y.; Song, S. Q.; Tong, Y. X. Phase boundary derived pseudocapacitance enhanced nickel-based composites for electrochemical energy storage devices. Adv. Energy Mater. 2018, 8, 1701681.

59

Feng, Y. G.; Shu, N.; Xie, J.; Ke, F.; Zhu, Y. W.; Zhu, J. F. Carbon-coated Fe2O3 hollow sea urchin nanostructures as high-performance anode materials for lithium-ion battery. Sci. China Mater. 2021, 64, 307–317.

File
12274_2021_3853_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 July 2021
Revised: 22 August 2021
Accepted: 26 August 2021
Published: 09 September 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21872008), the Natural Science Foundation of Beijing, China (No. 2212019) and Beijing Institute of Technology Research Fund Program for Young Scholars (Nos. 3100011182019 and 3100011182128). We would also thank the Analysis & Testing Center of Beijing Institute of Technology measurements.

Return