Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Selective semi-hydrogenation of phenylacetylene to styrene is a crucial step in the polystyrene industry. Although Pd-based catalysts are widely used in this reaction due to their excellent hydrogenation activity, the selectivity for styrene remains a great challenge. Herein, we designed a mesoporous silica stabilized Pd-Ru@ZIF-8 (MS Pd-Ru@ZIF-8) nanoreactor with novel Pd and Ru single site synergistic catalytical system for semi-hydrogenation of phenylacetylene. The nanoreactor exhibited a superior performance, achieving 98% conversion of phenylacetylene and 96% selectivity to styrene. Turnover frequency (TOF) of nanoreactor was up to as high as 2,188 h−1, which was 25 times and 5 times more than the single metal species catalysts, mesoporous silica stabilized Pd@ZIF-8 nanoreactor (MS Pd@ZIF-8), and mesoporous silica stabilized Ru@ZIF-8 nanoreactor (MS Ru@ZIF-8). This catalytic activity was attributed to the synergistic effect of Pd and Ru single site anchored strongly into the framework of ZIF-8, which reduced the desorption energy of styrene and increased the hydrogenation energy barrier of styrene. Importantly, since the ordered mesoporous silica was introduced into the nanoreactor shell to stabilize ZIF-8, MS Pd-Ru@ZIF-8 showed excellent reusability and stability. After the five cycles, the catalytical activity and selectivity still remained. This work provides insights for a synergistic catalytic system based on single-site active sites for selective hydrogenation reactions.
Li, L.; Yang, Z.; Fan, W. P.; He, L. C.; Cui, C.; Zou, J. H.; Tang, W.; Jacobson, O.; Wang, Z. T.; Niu, G. et al. In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS-mediated anticancer therapy. Adv. Funct. Mater. 2020, 30, 1907716.
Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater. 2019, 31, 1800426.
Meng, J. J.; Chang, F. W.; Su, Y. C.; Liu, R.; Cheng, T. Y.; Liu, G. H. Switchable catalysts used to control Suzuki cross-coupling and aza-michael addition/asymmetric transfer hydrogenation cascade reactions. ACS Catal. 2019, 9, 8693–8701.
Astle, M. A.; Rance, G. A.; Loughlin, H. J.; Peters, T. D.; Khlobystov, A. N. Molybdenum dioxide in carbon nanoreactors as a catalytic nanosponge for the efficient desulfurization of liquid fuels. Adv. Funct. Mater. 2019, 29, 1808092.
Tian, H.; Huang, F.; Zhu, Y. H.; Liu, S. M.; Han, Y.; Jaroniec, M.; Yang, Q. H.; Liu, H. Y.; Lu, G. Q. M.; Liu, J. The development of yolk-shell-structured Pd&ZnO@carbon submicroreactors with high selectivity and stability.Adv. Funct. Mater. 2018, 28, 1801737.
Song, S. Y.; Li, K.; Pan, J.; Wang, F.; Li, J. Q.; Feng, J.; Yao, S.; Ge, X.; Wang, X.; Zhang, H. J. Achieving the trade-off between selectivity and activity in semihydrogenation of alkynes by fabrication of (asymmetrical Pd@Ag core)@(CeO2 shell) nanocatalysts via autoredox reaction. Adv. Mater. 2017, 29, 1605332.
Mori, S.; Ohkubo, T.; Ikawa, T.; Kume, A.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Pd(0)-polyethyleneimine complex as a partial hydrogenation catalyst of alkynes to alkenes. J. Mol. Catal. A:Chem. 2009, 307, 77–87.
Karakhanov, E.; Maximov, A.; Kardasheva, Y.; Semernina, V.; Zolotukhina, A.; Ivanov, A.; Abbott, G.; Rosenberg, E.; Vinokurov, V. Pd nanoparticles in dendrimers immobilized on silica-polyamine composites as catalysts for selective hydrogenation. ACS Appl. Mater. Interfaces 2014, 6, 8807–8816.
Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C. W. Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes. ACS Catal. 2013, 3, 1700–1708.
Karakhanov, E. A.; Maximov, A. L.; Zakharyan, E. M.; Zolotukhina, A. V.; Ivanov, A. O. Palladium nanoparticles on dendrimer-containing supports as catalysts for hydrogenation of unsaturated hydrocarbons. Mol. Catal. 2017, 440, 107–119.
Karakanov, E. A.; Zolotukhina, A. V.; Ivanov, A. O.; Maximov, A. L. Dendrimer-encapsulated Pd nanoparticles, immobilized in silica pores, as catalysts for selective hydrogenation of unsaturated compounds. ChemistryOpen 2019, 8, 358–381.
Sun, Y. M.; Xue, Z. Q.; Liu, Q. L.; Jia, Y. L.; Li, Y. L.; Liu, K.; Lin, Y. Y.; Liu, M.; Li, G. Q.; Su, C. Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369.
Wang, Y.; Lv, H.; Grape, E. S.; Gaggioli, C. A.; Tayal, A.; Dharanipragada, A.; Willhammar, T.; Inge, A. K.; Zou, X. D.; Liu, B. et al. A tunable multivariate metal-organic framework as a platform for designing photocatalysts. J. Am. Chem. Soc. 2021, 143, 6333–6338.
Tsumori, N.; Chen, L. Y.; Wang, Q. J.; Zhu, Q. L.; Kitta, M.; Xu, Q. Quasi-MOF: Exposing inorganic nodes to guest metal nanoparticles for drastically enhanced catalytic activity. Chem 2018, 4, 845–856.
Zhao, R.; Liang, Z. B.; Gao, S.; Yang, C.; Zhu, B. J.; Zhao, J. L.; Qu, C.; Zou, R. Q.; Xu, Q. Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites. Angew. Chem., Int. Ed. 2019, 58, 1975–1979.
Zhuang, Z. W.; Wang, Y.; Xu, C. Q.; Liu, S. J.; Chen, C.; Peng, Q.; Zhuang, Z. B.; Xiao, H.; Pan, Y.; Lu, S. et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat. Commun. 2019, 10, 4875.
Yu, J. W.; Wang, X. Y.; Yuan, C. Y.; Li, W. Z.; Wang, Y. H.; Zhang, Y. W. Synthesis of ultrathin Ni nanosheets for semihydrogenation of phenylacetylene to styrene under mild conditions. Nanoscale 2018, 10, 6936–6944.
Kuwahara, Y.; Kango, H.; Yamashita, H. Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes. ACS Catal. 2019, 9, 1993–2006.
Quiroz, J.; Barbosa, E. C. M.; Araujo, T. P.; Fiorio, J. L.; Wang, Y. C.; Zou, Y. C.; Mou, T.; Alves, T. V.; de Oliveira, D. C.; Wang, B. et al. Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Lett. 2018, 18, 7289–7297.
Hammarback, L. A.; Clark, I. P.; Sazanovich, I. V.; Towrie, M.; Robinson, A.; Clarke, F.; Meyer, S.; Fairlamb, I. J. S.; Lynam, J. M. Mapping out the key carbon-carbon bond-forming steps in Mn-catalysed C-H functionalization. Nat. Catal. 2018, 1, 830–840.
Riley, C.; Zhou, S. L.; Kunwar, D.; De La Riva, A.; Peterson, E.; Payne, R.; Gao, L. Y.; Lin, S.; Guo, H.; Datye, A. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 2018, 140, 12964–12973.
Wu, Q. H.; Huang, L.; Li, J. Q.; Zheng, A. M.; Tao, Y.; Yang, L. X.; Yin, W. H.; Luo, F. Pd@Zn-MOF-74: Restricting a guest molecule by the open-metal site in a metal-organic framework for selective semihydrogenation. Inorg. Chem. 2018, 57, 12444–12447.
Bakuru, V. R.; Velaga, B.; Peela, N. R.; Kalidindi, S. B. Hybridization of Pd nanoparticles with UIO-66(Hf) metal-organic framework and the effect of nanostructure on the catalytic properties. Chem. Eur. J. 2018, 24, 15978–15982.
Hodge, K. L.; Goldberger, J. E. Transition metal-free alkyne hydrogenation catalysis with BaGa2, a hydrogen absorbing layered zintl phase. J. Am. Chem. Soc. 2019, 141, 19969–19972.
Zhang, J. B.; Xu, W. W.; Xu, L.; Shao, Q.; Huang, X. Q. Concavity tuning of intermetallic Pd-Pb nanocubes for selective semihydrogenation catalysis. Chem. Mater. 2018, 30, 6338–6345.
Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650–3657.
Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X.; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically Dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271–4275.
Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.
Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotech. 2018, 13, 702–707.
Singh, B.; Sharma, V.; Gaikwad, R. P.; Fornasiero, P.; Zbořil, R.; Gawande, M. B. Single-atom catalysts: A sustainable pathway for the advanced catalytic applications. Small 2021, 17, 2006473.
Sharma, P.; Kumar, S.; Tomanec, O.; Petr, M.; Chen, J. Z.; Miller, J. T.; Varma, R. S.; Gawande, M. B.; Zbořil, R. Carbon nitride-based ruthenium single atom photocatalyst for CO2 reduction to methanol. Small 2021, 17, 2006478.
Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem., Int. Ed. 2020, 59, 15849–15854.
An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.
Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Metal-ligand core-shell nanocomposite catalysts for the selective semihydrogenation of alkynes. Angew. Chem., Int. Ed. 2013, 52, 1481–1485.
Yang, X.; Tat, T.; Libanori, A.; Cheng, J.; Xuan, X. X.; Liu, N.; Yang, X.; Zhou, J. H.; Nashalian, A.; Chen, J. Single-atom catalysts with bimetallic centers for high-performance electrochemical CO2 reduction. Mater. Today 2021, 45, 54–61.
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.
Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.
Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.
Zhang, K.; Bin, D.; Yang, B. B.; Wang, C. Q.; Ren, F. F.; Du, Y. K. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation. Nanoscale 2015, 7, 12445–12451.
Hub, S.; Hilaire, L.; Touroude, R. Hydrogenation of but-1-yne and but-1-ene on palladium catalysts: Particle size effect. Appl. Catal. 1988, 36, 307–322.
Ryndin, Y. A.; Nosova, L. V.; Boronin, A. I.; Chuvilin, A. L. Effect of dispersion of supported palladium on its electronic and catalytic properties in the hydrogenation of vinylacetylene. Appl. Catal. 1988, 42, 131–141.
Yu, B.; Li, H.; White, J.; Donne, S.; Yi, J. B.; Xi, S. B.; Fu, Y.; Henkelman, G.; Yu, H.; Chen, Z. L. et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 2020, 30, 1905665.
Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.
Ai, S. S.; Guo, X.; Zhao, L.; Yang, D.; Ding, H. M. Zeolitic imidazolate framework-supported Prussian blue analogues as an efficient Fenton-like catalyst for activation of peroxymonosulfate. Colloids Surf. A:Physicochem. Eng. Aspects 2019, 581, 123796.
Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.
He, X. H.; Deng, Y. C.; Zhang, Y.; He, Q.; Xiao, D. Q.; Peng, M.; Zhao, Y.; Zhang, H.; Luo, R. C.; Gan, T. et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts. Cell Rep. Phys. Sci. 2020, 1, 100004.
Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.
Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.
Liu, K. L.; Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Zhang, Q. H.; Jing, W. T.; Ruan, P. P.; Gu, L.; Fu, G.; Zheng, N. F. Cu2O-supported atomically dispersed Pd catalysts for semihydrogenation of terminal alkynes: Critical role of oxide supports. Chin. Chem. Soc. Chem. 2019, 1, 207–214.
Zhang, L.; Liu, H. S.; Liu, S. H.; Banis, M. N.; Song, Z. X.; Li, J. J.; Yang, L. J.; Markiewicz, M.; Zhao, Y.; Li, R. Y. et al. Pt/Pd single-atom alloys as highly active electrochemical catalysts and the origin of enhanced activity. ACS Catal. 2019, 9, 9350–9358.
Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 μgNH3 mgcat.−1 h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.
Zhou, X. N.; Zhu, M. Y.; Kang, L. H. Single-Atom X/g-C3N4(X = Au1, Pd1, and Ru1) catalysts for acetylene hydrochlorination: A density functional theory study. Catalysts 2019, 9, 808.
Zhang, L.; Si, R. T.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936.
Xiao, M. L.; Gao, L. Q.; Wang, Y.; Wang, X.; Zhu, J. B.; Jin, Z.; Liu, C. P.; Chen, H. Q.; Li, G. R.; Ge, J. J. et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 2019, 141, 19800–19806.
Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.
Kotyczka-Morańska, M. Semi-quantitative and multivariate analysis of the thermal degradation of carbon-oxygen double bonds in biomass. J. Energy. Inst. 2019, 92, 923–932.
Veisi, H.; Razeghi, S.; Mohammadi, P.; Hemmati, S. Silver nanoparticles decorated on thiol-modified magnetite nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a recyclable nanocatalyst for degradation of organic dyes. Mat. Sci. Eng. :C 2019, 97, 624–631.
Thomas, M. R.; Brown, D.; Franzen, S.; Boxer, S. G. FTIR and resonance Raman studies of nitric oxide binding to H93G cavity mutants of myoglobin. Biochemistry 2001, 40, 15047–15056.