Journal Home > Volume 15 , Issue 3

To better understand the mechanisms of hydrogen peroxide (H2O2)’s decomposition and reactive oxygen species (ROS)’s formation on the catalyst’s surface is always a critical issue for the environmental application of Fenton/Fenton-like reaction. We here report a new approach to activate H2O2 in a co-catalytic Fenton system with oxygen incorporated MoS2, namely MoS2−xOx nanosheets. The MoS2−xOx nanosheets assisted co-catalytic Fenton system exhibited superior degradation activity of emerging antibiotic contaminants (e.g., sulfamethoxazole). Combining density functional theory (DFT) calculation and experimental investigation, we demonstrated that oxygen incorporation could improve the intrinsic conductivity of MoS2−xOx nanosheets and accelerate surface/interfacial charge transfer, which further leads to the efficacious activation of H2O2. Moreover, by tuning the oxygen proportion in MoS2−xOx nanosheets, we are able to modulate the generation of ROS and further direct the oriented-conversion of H2O2 to surface-bounded superoxide radical (·O2surface). It sheds light on the generation and transformation of ROS in the engineered system (e.g., Fenton, Fenton-like reaction) for efficient degradation of persistent pollutants.


menu
Abstract
Full text
Outline
About this article

Reinventing MoS2 Co-catalytic Fenton reaction: Oxygen-incorporation mediating surface superoxide radical generation

Show Author's information Xianjun TanWenhui DingZhenying JiangLinxiao SunYuxiong Huang( )
Environmental Science and New Energy Technology Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

To better understand the mechanisms of hydrogen peroxide (H2O2)’s decomposition and reactive oxygen species (ROS)’s formation on the catalyst’s surface is always a critical issue for the environmental application of Fenton/Fenton-like reaction. We here report a new approach to activate H2O2 in a co-catalytic Fenton system with oxygen incorporated MoS2, namely MoS2−xOx nanosheets. The MoS2−xOx nanosheets assisted co-catalytic Fenton system exhibited superior degradation activity of emerging antibiotic contaminants (e.g., sulfamethoxazole). Combining density functional theory (DFT) calculation and experimental investigation, we demonstrated that oxygen incorporation could improve the intrinsic conductivity of MoS2−xOx nanosheets and accelerate surface/interfacial charge transfer, which further leads to the efficacious activation of H2O2. Moreover, by tuning the oxygen proportion in MoS2−xOx nanosheets, we are able to modulate the generation of ROS and further direct the oriented-conversion of H2O2 to surface-bounded superoxide radical (·O2surface). It sheds light on the generation and transformation of ROS in the engineered system (e.g., Fenton, Fenton-like reaction) for efficient degradation of persistent pollutants.

Keywords: reactive oxygen species (ROS), Co-catalytic Fenton reaction, MoS2 nanosheets , superoxide radical, antibiotics’ degradation

References(49)

1

Bokare, A. D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135.

2

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

3

Fenton, H. J. H. LXXIII. —Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Trans. 1894, 65, 899–910.

4

Zhu, Y. P.; Zhu, R. L.; Xi, Y. F.; Zhu, J. X.; Zhu, G. Q.; He, H. P. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B: Environ. 2019, 255, 117739.

5

Yan, Q. Y.; Zhang, J. L.; Xing, M. Y. Cocatalytic Fenton reaction for pollutant control. Cell Rep. Phys. Sci. 2020, 1, 100149.

6

Zou, J.; Ma, J.; Chen, L. W.; Li, X. C.; Guan, Y. H.; Xie, P. C.; Pan, C. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. Environ. Sci. Technol. 2013, 47, 11685–11691.

7

Hou, X. J.; Huang, X. P.; Ai, Z. H.; Zhao, J. C.; Zhang, L. Z. Ascorbic acid/Fe@Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants. J. Hazard. Mater. 2016, 310, 170–178.

8

Zhang, Y.; Zhou, M. H. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J. Hazard. Mater. 2019, 362, 436–450.

9

Chen, L. W.; Ma, J.; Li, X. C.; Zhang, J.; Fang, J. Y.; Guan, Y. H.; Xie, P. C. Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environ. Sci. Technol. 2011, 45, 3925–3930.

10

Yi, Q. Y.; Ji, J. H.; Shen, B.; Dong, C. C.; Liu, J.; Zhang, J. L.; Xing, M. Y. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment. Environ. Sci. Technol. 2019, 53, 9725–9733.

11

Xing, M. Y.; Xu, W. J.; Dong, C. C.; Bai, Y. C.; Zeng, J. B.; Zhou, Y.; Zhang, J. L.; Yin, Y. D. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 2018, 4, 1359–1372.

12

Dong, C. C.; Ji, J. H.; Shen, B.; Xing, M. Y.; Zhang, J. L. Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol. Environ. Sci. Technol. 2018, 52, 11297–11308.

13

Zhou, H. Y.; Peng, J. L.; Li, J. Y.; You, J. J.; Lai, L. D.; Liu, R.; Ao, Z. M.; Yao, G.; Lai, B. Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe3+/Fe2+ cycle for peroxymonosulfate activation. Water Res. 2021, 188, 116529.

14

Zhou, P.; Ren, W.; Nie, G.; Li, X. J.; Duan, X. G.; Zhang, Y. L.; Wang, S. B. Fast and long-lasting iron(III) reduction by boron toward green and accelerated Fenton chemistry. Angew. Chem. 2020, 132, 16660–16669.

15

Zhou, P.; Cheng, F.; Nie, G.; Yang, Y. Y.; Hu, K. S.; Duan, X. G.; Zhang, Y. L.; Wang, S. B. Boron carbide boosted Fenton-like oxidation: A novel Fe(III)/Fe(II) circulation. Green Energy Environ. 2020, 5, 414–422.

16

Wang, Z. Y.; Mi, B. X. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 2017, 51, 8229–8244.

17

Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694.

18

Gao, X. X.; Yin, J.; Bian, G.; Liu, H. Y.; Wang, C. P.; Pang, X. X.; Zhu, J. High-mobility patternable MoS2 percolating nanofilms. Nano Res. 2021, 14, 2255–2263.

19

Loh, L.; Zhang, Z. P.; Bosman, M.; Eda, G. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 2021, 14, 1668–1681.

20

Wang, Y. N.; Zheng, Y.; Han, C.; Chen, W. Surface charge transfer doping for two-dimensional semiconductor-based electronic and optoelectronic devices. Nano Res. 2021, 14, 1682–1697.

21

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

22

Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

23

Li, W. Y.; Chen, M.; Zhong, Z. X.; Zhou, M.; Xing, W. H. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer. Front. Environ. Sci. Eng. 2020, 14, 102.

24

Ji, J. H.; Yan, Q. Y.; Yin, P. C.; Mine, S.; Matsuoka, M.; Xing, M. Y. Defects on CoS2−x: Tuning redox reactions for sustainable degradation of organic pollutants. Angew. Chem. 2021, 133, 2939–2944.

25

Xue, S.; Sun, S. B.; Qing, W. H.; Huang, T. B.; Liu, W.; Liu, C. Q.; Yao, H.; Zhang, W. Experimental and computational assessment of 1, 4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process. Front. Environ. Sci. Eng. 2021, 15, 95.

26
Wei, Z. L.; Xu, H. L.; Lei, Z. C.; Yi, X. Y.; Feng, C. H.; Dang, Z. A binder-free electrode for efficient H2O2 formation and Fe2+ regeneration and its application to an electro-Fenton process for removing organics in iron-laden acid wastewater. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2021.07.006.
27

Hayyan, M.; Hashim, M. A.; AlNashef, I. M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016, 116, 3029–3085.

28

Eisenberg, G. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. Anal. Ed. 1943, 15, 327–328.

29

Stucki, J. W. The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: II. A photochemical method. Soil Sci. Soc. Am. J. 1981, 45, 638–641.

30

Hu, X. K.; Qian, Y. T.; Song, Z. T.; Huang, J. R.; Cao, R.; Xiao, J. Q. Comparative study on MoO3 and HxMoO3 nanobelts: Structure and electric transport. Chem. Mater. 2008, 20, 1527–1533.

31

Xue, X. Y.; Zhang, J. N.; Saana, I. A.; Sun, J.; Xu, Q.; Mu, S. C. Rational inert-basal-plane activating design of ultrathin 1T′ phase MoS2 with a MoO3 heterostructure for enhancing hydrogen evolution performances. Nanoscale 2018, 10, 16531–16538.

32

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

33

Yu, X. Y.; Hu, H.; Wang, Y. W.; Chen, H. Y.; Lou, X. W. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem. 2015, 127, 7503–7506.

34

Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

35

Liu, Z. P.; Gao, Z. C.; Liu, Y. H.; Xia, M. S.; Wang, R. W.; Li, N. Heterogeneous nanostructure based on 1T-phase MoS2 for enhanced electrocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 25291–25297.

36

Chen, Y.; Zhang, G.; Ji, Q. H.; Liu, H. J.; Qu, J. H. Triggering of low-valence molybdenum in multiphasic MoS2 for effective reactive oxygen species output in catalytic Fenton-like reactions. ACS Appl. Mater. Interfaces 2019, 11, 26781–26788.

37

Wang, D. Z.; Su, B. Y.; Jiang, Y.; Li, L.; Ng, B. K.; Wu, Z. Z.; Liu, F. Y. Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chem. Eng. J. 2017, 330, 102–108.

38

Mishra, D.; Farrell, J. Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy. Environ. Sci. Technol. 2005, 39, 645–650.

39

Hu, Y.; Peng, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Liquid nitrogen activation of zero-valent iron and its enhanced Cr(VI) removal performance. Environ. Sci. Technol. 2019, 53, 8333–8341.

40

Gallard, H.; De Laat, J. Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Res. 2000, 34, 3107–3116.

41

Nardi, G.; Manet, I.; Monti, S.; Miranda, M. A.; Lhiaubet-Vallet, V. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: The misleading role of electron transfer. Free Radic. Biol. Med. 2014, 77, 64–70.

42

Wang, Y. B.; Cao, D.; Liu, M.; Zhao, X. Insights into heterogeneous catalytic activation of peroxymonosulfate by Pd/g-C3N4: The role of superoxide radical and singlet oxygen. Catal. Commun. 2017, 102, 85–88.

43

Lee, J.; von Gunten, U.; Kim, J. H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081.

44

Salgado, P.; Melin, V.; Contreras, D.; Moreno, Y.; Mansilla, H. D. Fenton reaction driven by iron ligands. J. Chil. Chem. Soc. 2013, 58, 2096–2101.

45

Chen, R. Z.; Pignatello, J. J. Role of Quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ. Sci. Technol. 1997, 31, 2399–2406.

46

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 9, 2441–2449.

47

Boonstra, A. H.; Mutsaers, C. A. H. A. Adsorption of hydrogen peroxide on the surface of titanium dioxide. J. Phys. Chem. 1975, 79, 1940–1943.

48

Li, X. Z.; Chen, C. C.; Zhao, J. Z. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 2001, 17, 4118–4122.

49

Che, M.; Sojka, Z. Electron transfer processes at the surface of MoOx/SiO2 catalysts. Top. Catal. 2001, 15, 211–217.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 July 2021
Revised: 17 August 2021
Accepted: 25 August 2021
Published: 09 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 42077293 and 22006088), Natural Science Foundation of Guangdong Province (Nos. 2019A1515011692 and 2019QN01L797), and Shenzhen Municipal Science and Technology Innovation Committee (Nos. JCYJ20190809181413713 and WDZC20200817103015002). Y. X. H. also thanks the financial support from Overseas Cooperation Research Fund of Tsinghua Shenzhen International Graduate School (Nos. HW2020002 and QD2021010N). This work was also supported by the China Postdoctoral Science Foundation (No. 2019M66067).

Return