Journal Home > Volume 15 , Issue 3

Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure, was proposed to synthesize air stable and autocatalytic magnesium nickel hydride (Mg2NiH4), which shows excellent hydrogen absorption/desorption kinetics, capacity retention and oxidation resistance. The short-term-milled Mg2NiH4 can desorb 2.97 wt.% hydrogen within 500 s at 230 °C. Even after exposure under air atmosphere for 67 days, it can still desorb 2.88 wt.% hydrogen within 500 s at 230 °C. The experimental and theoretical results both indicated that the surface of as-milled Mg2NiH4 was easy to be oxidized under air atmosphere. However, the in-situ formed Ni during air exposure of Mg2NiH4 improved the hydrogen desorption kinetics, and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning, which we called autocatalytic and self-protective effect. Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg2NiH4. Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.


menu
Abstract
Full text
Outline
About this article

Air-stable magnesium nickel hydride with autocatalytic and self-protective effect for reversible hydrogen storage

Show Author's information Zhongliang Ma1Yingyan Zhao1Zhaohui Wu2Qinke Tang1Jinlian Ni1Yunfeng Zhu1( )Jiguang Zhang1Yana Liu1Yao Zhang3Hai-Wen Li4,5Xiaohui Hu1Xinjian Zhu2Liquan Li1( )
College of Materials Science and Engineering, Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
Jiangsu Qianjing New Energy Industrial Technology Research Institute Co., Ltd, 1 Dangui Road, Zhenjiang 212028, China
School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Hefei General Machinery Research Institute, Hefei, 230031, China
WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan

Abstract

Among the factors which restrict the large-scale utilization of magnesium-based hydride as a hydrogen storage medium, the high operating temperature, slow kinetics, and air stability in particular are key obstacles. In this work, a novel method, namely hydriding combustion synthesis plus short-term mechanical milling followed by air exposure, was proposed to synthesize air stable and autocatalytic magnesium nickel hydride (Mg2NiH4), which shows excellent hydrogen absorption/desorption kinetics, capacity retention and oxidation resistance. The short-term-milled Mg2NiH4 can desorb 2.97 wt.% hydrogen within 500 s at 230 °C. Even after exposure under air atmosphere for 67 days, it can still desorb 2.88 wt.% hydrogen within 500 s at 230 °C. The experimental and theoretical results both indicated that the surface of as-milled Mg2NiH4 was easy to be oxidized under air atmosphere. However, the in-situ formed Ni during air exposure of Mg2NiH4 improved the hydrogen desorption kinetics, and the formed surface passivation layer maintained the hydrogen storage capacity and avoided further poisoning, which we called autocatalytic and self-protective effect. Such a novel dual effect modified the reaction activity and oxidation resistance of the air-exposed Mg2NiH4. Our findings provide useful insights into the design and preparation of air stable metal-based hydride for large-scale utilization and long-term storage.

Keywords: oxidation resistance, hydrogen storage, autocatalytic, self-protective, magnesium based hydride

References(63)

1

Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.

2

Ouyang, L. Z.; Chen, W.; Liu, J. W.; Felderhoff, M.; Wang, H.; Zhu, M. Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Adv. Energy Mater. 2017, 7, 1700299.

3

Yartys, V. A.; Lototskyy, M. V.; Akiba, E.; Albert, R.; Antonov, V. E.; Ares, J. R.; Baricco, M.; Bourgeois, N.; Buckley, C. E.; Von Colbe, J. M. B. et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859.

4

Zhu, Y. Y.; Ouyang, L. Z.; Zhong, H.; Liu, J. W.; Wang, H.; Shao, H. Y.; Huang, Z. G.; Zhu, M. Closing the loop for hydrogen storage: Facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem., Int. Ed. 2020, 59, 8623–8629.

5

Chen, K.; Ouyang, L. Z.; Zhong, H.; Liu, J. W.; Wang, H.; Shao, H. Y.; Zhang, Y.; Zhu, M. Converting H+ from coordinated water into H enables super facile synthesis of LiBH4. Green Chem 2019, 21, 4380–4387.

6

Yu, X. B.; Tang, Z. W.; Sun, D. L.; Ouyang, L. Z.; Zhu, M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci. 2017, 88, 1–48.

7

Chen, Z.; Ma, Z. L.; Zheng, J.; Li, X. G.; Akiba, E.; Li, H. W. Perspectives and challenges of hydrogen storage in solid-state hydrides. Chin. J. Chem. Eng. 2021, 29, 1–12.

8

Sun, Y. H.; Shen, C. Q.; Lai, Q. W.; Liu, W.; Wang, D. W.; Aguey-Zinsou, K. F. Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Mater 2018, 10, 168–198.

9

Xia, G. L.; Tan, Y. B.; Chen, X. W.; Sun, D. L.; Guo, Z. P.; Liu, H. K.; Ouyang, L. Z.; Zhu, M.; Yu, X. B. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv. Mater. 2015, 27, 5981–5988.

10

Wagemans, R. W. P.; Van Lenthe, J. H.; De Jongh, P. E.; Van Dillen, A. J.; De Jong, K. P. Hydrogen storage in magnesium clusters: Quantum chemical study. J. Am. Chem. Soc. 2005, 127, 16675–16680.

11

Lotoskyy, M.; Denys, R.; Yartys, V. A.; Eriksen, J.; Goh, J.; Nyamsi, S. N.; Sita, C.; Cummings, F. An outstanding effect of graphite in Nano-MgH2-TiH2 on hydrogen storage performance. J. Mater. Chem. A 2018, 6, 10740–10754.

12

Liu, H. Z.; Lu, C. L.; Wang, X. C.; Xu, L.; Huang, X. T.; Wang, X. H.; Ning, H.; Lan, Z. Q.; Guo, J. Combinations of V2C and Ti3C2 MXenes for boosting the hydrogen storage performances of MgH2. ACS Appl. Mater. Interfaces 2021, 13, 13235–13247.

13

Norberg, N. S.; Arthur, T. S.; Fredrick, S. J.; Prieto, A. L. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution. J. Am. Chem. Soc. 2011, 133, 10679–10681.

14

Liu, Y. N.; Zou, J. X.; Zeng, X. Q.; Wu, X. M.; Li, D. J.; Ding, W. J. Hydrogen storage properties of a Mg-Ni nanocomposite coprecipitated from solution. J. Phys. Chem. C 2014, 118, 18401–18411.

15

Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Huang, Z. G.; Lu, Y. H.; Gao, M. X.; Pan, H. G. Realizing 6. 7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy Environ. Sci. 2021, 14, 2302–2313.

16

Liang, G.; Boily, S.; Huot, J.; Van Neste, A.; Schulz, R. Mechanical alloying and hydrogen absorption properties of the Mg-Ni system. J. Alloys Compd. 1998, 267, 302–306.

17

Zhu, Y. L.; Luo, S. C.; Lin, H. J.; Liu, Y. N.; Zhu, Y. F.; Zhang, Y.; Li, L. Q. Enhanced hydriding kinetics of Mg-10 at.% Al composite by forming Al12Mg17 during hydriding combustion synthesis. J. Alloys Compd. 2017, 712, 44–49.

18

Ouyang, L. Z.; Cao, Z. J.; Wang, H.; Liu, J. W.; Sun, D. L.; Zhang, Q. A.; Zhu, M. Enhanced dehydriding thermodynamics and kinetics in Mg(In)-MgF2 composite directly synthesized by plasma milling. J. Alloys Compd. 2014, 586, 113–117.

19

Cao, Z. J.; Ouyang, L. Z.; Wu, Y. Y.; Wang, H.; Liu, J. W.; Fang, F.; Sun, D. L.; Zhang, Q. A.; Zhu, M. Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling. J. Alloys Compd. 2015, 623, 354–358.

20

Ma, Z. L.; Liu, J. C.; Zhu, Y. F.; Zhao, Y. Y.; Lin, H. J.; Zhang, Y.; Li, H. W.; Zhang, J. G.; Liu, Y. N.; Gao, W. T. et al. Crystal-facet-dependent catalysis of anatase TiO2 on hydrogen storage of MgH2. J. Alloys Compd. 2020, 822, 153553.

21

Cui, J.; Liu, J. W.; Wang, H.; Ouyang, L. Z.; Sun, D. L.; Zhu, M.; Yao, X. D. Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2014, 2, 9645–9655.

22

Zhang, L. C.; Wang, K.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Res 2021, 14, 148–156.

23

Wirth, E.; Milcius, D.; Filiou, C.; Noréus, D. Exploring the hydrogen sorption capacity of Mg-Ni powders produced by the vapour deposition technique. Int. J. Hydrogen Energy 2008, 33, 3122–3127.

24

Matsumoto, I.; Akiyama, T.; Nakamura, Y.; Akiba, E. Controlled shape of magnesium hydride synthesized by chemical vapor deposition. J. Alloys Compd. 2010, 507, 502–507.

25

Kalinichenka, S.; Röntzsch, L.; Riedl, T.; Gemming, T.; Weißgärber, T.; Kieback, B. Microstructure and hydrogen storage properties of melt-spun Mg-Cu-Ni-Y alloys. Int. J. Hydrogen Energy 2011, 36, 1592–1600.

26

Wu, Y.; Lototsky, M. V.; Solberg, J. K.; Yartys, V. A. Microstructural evolution and improved hydrogenation-dehydrogenation kinetics of nanostructured melt-spun Mg-Ni-Mm alloys. J. Alloys Compd. 2011, 509, S640–S645.

27

Kitabayashi, K.; Edalati, K.; Li, H. W.; Akiba, E.; Horita, Z. Phase transformations in MgH2-TiH2 hydrogen storage system by high-pressure torsion process. Adv. Eng. Mater. 2020, 22, 1900027.

28

De Marco, M. O.; Li, Y. T.; Li, H. W.; Edalati, K.; Floriano, R. Mechanical synthesis and hydrogen storage characterization of MgVCr and MgVTiCrFe high-entropy alloy. Adv. Eng. Mater. 2020, 22, 1901079.

29

Akiyama, T.; Isogai, H.; Yagi, J. Hydriding combustion synthesis for the production of hydrogen storage alloy. J. Alloys Compd. 1997, 252, L1–L4.

30

Liu, X. F.; Zhu, Y. F.; Li, L. Q. Hydriding and dehydriding properties of nanostructured Mg2Ni alloy prepared by the process of hydriding combustion synthesis and subsequent mechanical grinding. J. Alloys Compd. 2006, 425, 235–238.

31

Li, L. Q.; Akiyama, T.; Yagi, J. I. Effect of hydrogen pressure on the combustion synthesis of Mg2NiH4. Intermetallics 1999, 7, 201–205.

32

Li, L. Q.; Akiyama, T.; Kabutomori, T.; Terao, K.; Yagi, J. Hydriding and dehydriding behavior of the product in hydriding combustion synthesis of Mg2NiH4. J. Alloys Compd. 1999, 287, 98–103.

33

Li, L. Q.; Akiyama, T.; Yagi, J. I. Reaction mechanism of hydriding combustion synthesis of Mg2NiH4. Intermetallics 1999, 7, 671–677.

34

Liu, X. F.; Zhu, Y. F.; Li, L. Q. Hydriding characteristics of Mg2Ni prepared by mechanical milling of the product of hydriding combustion synthesis. Int. J. Hydrogen Energy 2007, 32, 2450–2454.

35

Martinez-Garcia, A.; Navarro-Mtz, A. K.; Reguera, E.; Valera-Zaragoza, M.; Morales-Serna, J. A.; Juarez-Arellano, E. A. Fabrication of ball-milled MgO-Mg(OH)2-hydromagnesite composites and evaluation as an air-stable hydrogen storage material. Int. J. Hydrogen Energy 2020, 45, 12949–12960.

36

Liska, M.; Al-Tabbaa, A. Performance of magnesia cements in porous blocks in acid and magnesium environments. Adv. Cem. Res. 2012, 24, 221–232.

37

Jeon, K. J.; Moon, H. R.; Ruminski, A. M.; Jiang, B.; Kisielowski, C.; Bardhan, R.; Urban, J. J. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 2011, 10, 286–290.

38

Ruminski, A. M.; Bardhan, R.; Brand, A.; Aloni, S.; Urban, J. J. Synergistic enhancement of hydrogen storage and air stability via Mg nanocrystal-polymer interfacial interactions. Energy Environ. Sci. 2013, 6, 3267–3271.

39

Cho, E. S.; Ruminski, A. M.; Aloni, S.; Liu, Y. S.; Guo, J. H.; Urban, J. J. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nat. Commun. 2016, 7, 10804.

40

Wan, L. F.; Cho, E. S.; Marangoni, T.; Shea, P.; Kang, S.; Rogers, C.; Zaia, E.; Cloke, R. R.; Wood, B. C.; Fischer, F. R. et al. Edge-functionalized graphene nanoribbon encapsulation to enhance stability and control kinetics of hydrogen storage materials. Chem. Mater. 2019, 31, 2960–2970.

41

Shinde, S. S.; Kim, D. H.; Yu, J. Y.; Lee, J. H. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage. Nanoscale 2017, 9, 7094–7103.

42

Liang, H.; Chen, D. D.; Thiry, D.; Li, W. J.; Chen, M. F.; Snyders, R. Efficient hydrogen storage with the combination of metal Mg and porous nanostructured material. Int. J. Hydrogen Energy 2019, 44, 16824–16832.

43

Zhang, J. G.; Zhu, Y. F.; Lin, H. J.; Liu, Y. N.; Zhang, Y.; Li, S. Y.; Ma, Z. L.; Li, L. Q. Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement. Adv. Mater. 2017, 29, 1700760.

44

Ma, Z. L.; Liu, J. C.; Zhao, Y. Y.; Zhang, J. G.; Zhu, Y. F.; Zhang, Y.; Liu, Y. N.; Li, L. Q. Enhanced dehydrogenation properties of LiAlH4-Mg2NiH4 nanocomposites via doping Ti-based catalysts. Mater. Res. Express 2019, 6, 075067.

45

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

46

Maurice, D.; Courtney, T. H. Modeling of mechanical alloying: Part I. Deformation, coalescence, bdand fragmentation mechanisms. Metall. Mater. Trans. A 1994, 25, 147–158.

47

Maurice, D. R.; Courtney, T. H. The physics of mechanical alloying: A first report. Metall. Trans. A 1990, 21, 289–303.

48

Ares, J. R.; Cuevas, F.; Percheron-Guégan, A. Mechanical milling and subsequent annealing effects on the microstructural and hydrogenation properties of multisubstituted LaNi5 alloy. Acta Mater. 2005, 53, 2157–2167.

49

Zeaiter, A.; Chapelle, D.; Cuevas, F.; Maynadier, A.; Latroche, M. Milling effect on the microstructural and hydrogenation properties of TiFe0.9Mn0.1 alloy. Powder Technol. 2018, 339, 903–910.

50

Park, M.; Shim, J. H.; Lee, Y. S.; Im, Y. H.; Cho, Y. W. Mitigation of degradation in the dehydrogenation behavior of air-exposed MgH2 catalyzed with NbF5. J. Alloys Compd. 2013, 575, 393–398.

51

Liu, H.; Sun, P.; Bowman, R. C. Jr.; Fang, Z. Z.; Liu, Y.; Zhou, C. S. Effect of air exposure on hydrogen storage properties of catalyzed magnesium hydride. J. Power Sources 2020, 454, 227936.

52

Park, K. B.; Ko, W. S.; Fadonougbo, J. O.; Na, T. W.; Im, H. T.; Park, J. Y.; Kang, J. W.; Kang, H. S.; Park, C. S.; Park, H. K. Effect of Fe substitution by Mn and Cr on first hydrogenation kinetics of air-exposed TiFe-based hydrogen storage alloy. Mater. Charact. 2021, 178, 111246.

53

Modi, P.; Aguey-Zinsou, K. F. Titanium-iron-manganese (TiFe0.85Mn0.15) alloy for hydrogen storage: Reactivation upon oxidation. Int. J. Hydrogen Energy 2019, 44, 16757–16764.

54

Manna, J.; Tougas, B.; Huot, J. First hydrogenation kinetics of Zr and Mn doped TiFe alloy after air exposure and reactivation by mechanical treatment. Int. J. Hydrogen Energy 2020, 45, 11625–11631.

55

De Almeida Neto, G. R.; Beatrice, C. A. G.; Leiva, D. R.; Pessan, L. A. Polymer-based composite containing nanostructured LaNi5 for hydrogen storage: Improved air stability and processability. Int. J. Hydrogen Energy 2020, 45, 14017–14027.

56

Matusita, K.; Sakka, S. Kinetic study of crystallization of glass by differential thermal analysis-criterion on application of Kissinger plot. J. Non-Cryst. Solids 1980, 38−39, 741–746.

57

Hjort, P.; Krozer, A.; Kasemo, B. Hydrogen sorption kinetics in partly oxidized Mg films. J. Alloys Compd. 1996, 237, 74–80.

58

Hou, X. J.; Hu, R.; Zhang, T. B.; Kou, H. C.; Song, W. J.; Li, J. S. Hydrogen desorption performance of high-energy ball milled Mg2NiH4 catalyzed by multi-walled carbon nanotubes coupling with TiF3. Int. J. Hydrogen Energy 2014, 39, 19672–19681.

59

Wu, K. Y.; Cai, D. Q.; Shao, K. M.; Xue, T. G.; Zhang, P.; Li, W.; Lin, H. J. Effect of CeH2.73-CeO2 composites on the desorption properties of Mg2NiH4. Front. Chem. 2020, 8, 293.

60

Selvam, P.; Viswanathan, B.; Srinivasan, V. The influence of atmospheric CO2 on the surface properties of Mg2NiH4 and a comparison with some hydrogen storage alloys. J. Less-Common Metals 1990, 158, L1–L7.

61

Selvam, P.; Viswanathan, B.; Srinivasan, V. X-ray photoelectron spectroscopic, electrical and magnetic studies on Mg2NiH4. J. Electron Spectrosc. Relat. Phenom. 1988, 46, 357–361.

62

Wang, L.; Shinohara, T.; Zhang, B. P. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution. Appl. Surf. Sci. 2010, 256, 5807–5812.

63

Jönsson, M.; Persson, D.; Thierry, D. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D. Corros. Sci. 2007, 49, 1540–1558.

Publication history
Copyright
Acknowledgements

Publication history

Received: 09 July 2021
Revised: 13 August 2021
Accepted: 26 August 2021
Published: 05 October 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51771092, 52071177, and 21975125), Six Talent Peaks Project in Jiangsu Province (No. 2018-XNY-020) and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions. The computational resources generously provided by the High Performance Computing Center of Nanjing Tech University are greatly appreciated.

Return