Journal Home > Volume 15 , Issue 3

Interfacial atomic configuration between dual-metal active species and nitrogen-carbon substrates is of great importance for improving the intrinsic activity of catalysts toward oxygen reduction reaction (ORR). Thus, from the atomic-scale engineering we develop a high intrinsic activity ORR catalyst in terms of incorporating atomically dispersed dual Fe centers (single Fe atoms and ultra-small Fe atomic clusters) into bamboo-like N-doped carbon nanotubes. Benefiting from atomically dispersed dual-Fe centers on the atomic interface of Fe-Nx/carbon nanotubes, the fabricated dual Fe centers catalyst exhibits an extremely high ORR activity (Eonset = 1.006 V; E1/2 = 0.90 V), beyond state-of-the-art Pt/C. Remarkably, this catalyst also shows a superior kinetic current density of 19.690 mA·cm−2, which is 7 times that of state-of-the-art Pt/C. Additionally, based on the excellent catalyst, the primary Zn-air battery reveals a high power density up to 137 mW·cm−2 and sufficient potential cycling stability (at least 25 h). Undoubtedly, given the unique structure–activity relationship of dual-Fe active species and metal-nitrogen-carbon substrates, the catalyst will show great prospects in highly efficient electrochemical energy conversion devices.


menu
Abstract
Full text
Outline
About this article

Atomically dispersed dual Fe centers on nitrogen-doped bamboo-like carbon nanotubes for efficient oxygen reduction

Show Author's information Ligang Ma1,§Junlin Li2,§Zhiwei Zhang3,§Hao Yang4Xueqin Mu4Xiangyao Gu4Huihui Jin3Ding Chen3Senlin Yan1( )Suli Liu4( )Shichun Mu3,5( )
School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
Nanjing Key Laboratory of Optometric Materials and Technology, Jinling Institute of Technology, Nanjing 211169, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China

§ Ligang Ma, Junlin Li, and Zhiwei Zhang contributed equally to this work.

Abstract

Interfacial atomic configuration between dual-metal active species and nitrogen-carbon substrates is of great importance for improving the intrinsic activity of catalysts toward oxygen reduction reaction (ORR). Thus, from the atomic-scale engineering we develop a high intrinsic activity ORR catalyst in terms of incorporating atomically dispersed dual Fe centers (single Fe atoms and ultra-small Fe atomic clusters) into bamboo-like N-doped carbon nanotubes. Benefiting from atomically dispersed dual-Fe centers on the atomic interface of Fe-Nx/carbon nanotubes, the fabricated dual Fe centers catalyst exhibits an extremely high ORR activity (Eonset = 1.006 V; E1/2 = 0.90 V), beyond state-of-the-art Pt/C. Remarkably, this catalyst also shows a superior kinetic current density of 19.690 mA·cm−2, which is 7 times that of state-of-the-art Pt/C. Additionally, based on the excellent catalyst, the primary Zn-air battery reveals a high power density up to 137 mW·cm−2 and sufficient potential cycling stability (at least 25 h). Undoubtedly, given the unique structure–activity relationship of dual-Fe active species and metal-nitrogen-carbon substrates, the catalyst will show great prospects in highly efficient electrochemical energy conversion devices.

Keywords: oxygen reduction reaction, atomic configuration, single Fe atoms, atomically dispersed Fe clusters, N-doped bamboo-like carbon nanotubes

References(58)

1

Huang, L.; Zaman, S.; Tian, X. L.; Wang, Z. T.; Fang, W. S.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311–322.

2

Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Ma, T. Y.; Liu, Z. Q. Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13291–13296.

3

Ma, Z.; Cano, Z. P.; Yu, A. P.; Chen, Z. W.; Jiang, G. P.; Fu, X. G.; Yang, L.; Wu, T. P.; Bai, Z. Y.; Lu, J. Enhancing oxygen reduction activity of Pt-based electrocatalysts: From theoretical mechanisms to practical methods. Angew. Chem., Int. Ed. 2020, 59, 18334–18348.

4

Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.

5

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

6

Hu, Y. M.; Zhu, M. Z.; Luo, X.; Wu, G.; Chao, T. T.; Qu, Y. T.; Zhou, F. Y.; Sun, R. B.; Han, X.; Li, H. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem. Int. Ed. 2021, 60, 6533–6538.

7

Li, Z. J.; Yao, Y. C.; Niu, Y.; Zhang, W. J.; Chen, B. B.; Zeng, X. R.; Zou, J. Z. Multi-heteroatom-doped hollow carbon tubes as robust electrocatalysts for the oxygen reduction reaction, oxygen and hydrogen evolution reaction. Chem. Eng. J. 2021, 418, 129321.

8

Lin, L. X.; Miao, N. H.; Wallace, G. G.; Chen, J.; Allwood, D. A. Engineering carbon materials for electrochemical oxygen reduction reactions. Adv. Energy Mater. 2021, 11, 2100695.

9

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. Int. Ed. 2021, 60, 19085–19091.

10

Wang, Y.; Li, J; Wei, Z. D. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 8194–8209.

11

Huang, L.; Zheng, X. L.; Gao, G.; Zhang, H.; Rong, K.; Chen, J. X.; Liu, Y. Q.; Zhu, X. Y.; Wu, W. W.; Wang, Y. et al. Interfacial electron engineering of palladium and molybdenum carbide for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 6933–6941.

12

Zhang, C. L.; Liu, J. T.; Li, H.; Qin, L.; Cao, F. H.; Zhang, W. The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Appl. Catal. B: Environ. 2020, 261, 118224.

13

Guo, J. N.; Xu, N. N.; Wang, Y. X.; Wang, X.; Huang, H. T.; Qiao, J. L. Bimetallic sulfide with controllable Mg substitution anchored on CNTs as hierarchical bifunctional catalyst toward oxygen catalytic reactions for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 37164–37172.

14

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

15

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

16

Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.

17

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

18

Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651–1657.

19

Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.

20

Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, L.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

21

Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

22

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

23

Zhang, J.; Huang, Q. A.; Wang, J.; Wang, J.; Zhang. J. J.; Zhao. Y. F. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798.

24

Zhang, W. Y.; Chao, Y. G.; Zhang, W. S.; Zhou, J. H.; Lv, F.; Wang, K.; Lin, F. X.; Luo, H.; Li, J.; Tong, M. P. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 2102576.

25

Jin, Z. Y.; Li, P. P.; Meng, Y.; Fang, Z. W.; Xiao, D.; Yu, G. H. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 2021, 4, 615–622.

26

Jin, H. H.; Zhao, X.; Liang, L. H.; Ji, P. X.; Liu, B. S.; Hu, C. X.; He, D. P.; Mu, S. C. Sulfate ions induced concave porous S-N co-doped carbon confined FeCx nanoclusters with Fe-N4 sites for efficient oxygen reduction in alkaline and acid media. Small 2021, 17, 2101001.

27
Zhang, L. C.; Liang, J.; Yue, L. C.; Xu, Z. Q.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Cheng, X. H.; Cui, G. W. et al. N-doped carbon nanotubes supported CoSe2 nanoparticles: A highly efficient and stable catalyst for H2O2 electrosynthesis in acidic media. Nano Res., in press, DOI: 10.1007/s12274-021-3474-0.https://doi.org/10.1007/s12274-021-3474-0
DOI
28

Wang, Y. C.; Liu, Y. S.; Yang, H. F.; Liu, Y.; Wu, K. H.; Yang, G. C. Ionic liquid derived Fe, N, B co-doped bamboo-like carbon nanotubes as an efficient oxygen reduction catalyst. J. Colloid Interface Sci. 2020, 579, 637–644.

29

Jiang, M.; Cao, X. P.; Zhu, D. D.; Duan, Y. X.; Zhang, J. M. Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochim. Acta 2016, 196, 699–707.

30

Wang, M. R.; Yang, W. J.; Li, X. Z.; Xu, Y. S.; Zheng, L. R.; Su, C. L.; Liu, B. Atomically dispersed Fe-heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett. 2021, 6, 379–386.

31

Zhang, S. L.; Lu, X. F.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. Engineering platinum-cobalt nano-alloys in porous nitrogen-doped carbon nanotubes for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19068–19073.

32

Mi, J. L.; Liang, J. H.; Yang, L. P.; Wu, B.; Liu, L. Effect of Zn on size control and oxygen reduction reaction activity of Co nanoparticles supported on N-doped carbon nanotubes. Chem. Mater. 2019, 31, 8864–8874.

33

Lu, Q.; Yu, J.; Zou, X. H.; Liao, K. M.; Tan, P.; Zhou, W.; Ni, M.; Shao, Z. P. Self-catalyzed growth of Co, N-Codoped CNTs on carbon-encased CoSx surface: A noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 2019, 29, 1904481.

34

Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

35

Zhou, H.; Yang, T.; Kou, Z. K.; Shen, L.; Zhao, Y. F.; Wang, Z. Y.; Wang, X. Q.; Yang, Z. K.; Du, J. Y.; Xu, J. et al. Negative pressure pyrolysis induced highly accessible single sites dispersed on 3D graphene frameworks for enhanced oxygen reduction. Angew. Chem., Int. Ed. 2020, 59, 20465–20469.

36

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

37

Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

38

Wang, J.; Liu, W.; Luo, G.; Li, Z. J.; Zhao, C.; Zhang, H. R.; Zhu, M. Z.; Xu, Q.; Wang, X. Q.; Zhao, C. M. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.

39

Yuan, S.; Pu, Z. H.; Yu, J.; Amiinu, I. S.; Zhou, J. W.; Liang, Q. R.; Yang, J. L.; He, D. P.; Hu, Z. Y.; Van Tendeloo, G. et al. A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy 2019, 59, 472–480.

40

Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

41

Wang, J.; Duan, X. G.; Gao, J.; Shen, Y.; Feng, X. H.; Yu, Z. J.; Tan, X. Y.; Liu, S. M.; Wang. S. B. Roles of structure defect, oxygen groups and heteroatom doping on carbon in nonradical oxidation of water contaminants. Water Res. 2020, 185, 116244.

42

Wang, C.; Liu, Y. P.; Li, Z. F.; Wang, L. K.; Niu, X. L.; Sun, P. Novel space-confinement synthesis of two-dimensional Fe, N-Codoped graphene bifunctional oxygen electrocatalyst for rechargeable air-cathode. Chem. Eng. J. 2021, 411, 128492.

43
Jiao, L.; Li, J. K.; Richard, L. L.; Sun, Q.; Stracensky, T.; Liu, E.; Sougrati, M. T.; Zhao, Z. P.; Yang, F.; Zhong, S. C. et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater., in press, DOI: 10.1038/s41563-021-01030-2.https://doi.org/10.1038/s41563-021-01030-2
DOI
44

Wei, X. Q.; Luo, X.; Wang, H. J.; Gu, W. L.; Cai, W. W.; Lin, Y. H.; Zhu, C. Z. Highly-defective Fe-N-C catalysts towards pH-universal oxygen reduction reaction. Appl. Catal. B: Environ. 2020, 263, 118347.

45

Zhang, X. B.; Han, X.; Jiang, Z.; Xu, J.; Chen, L. N.; Xue, Y. K.; Nie, A. M.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. Atomically dispersed hierarchically ordered porous Fe-N-C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery. Nano Energy 2020, 71, 104547.

46

Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.

47

Wagner, S.; Auerbach, H.; Tait, C. E.; Martinaiou, I.; Kumar, S. C. N.; Kübel, C.; Sergeev, I.; Wille, H. C.; Behrends, J.; Wolny, J. A. et al. Elucidating the structural composition of an Fe-N-C catalyst by nuclear- and electron-resonance techniques. Angew. Chem., Int. Ed. 2019, 58, 10486–10492.

48

Wang, T. L.; Chutia, A.; Brett, D. J. L.; Shearing, P. R.; He, G. J.; Chai, G. L.; Parkin, I. P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci. 2021, 14, 2639–2669.

49

Zhu, B.; Lu, J.; Sakaki, S. Catalysis of core-shell nanoparticle M@Pt (M=Co and Ni) for oxygen reduction reaction and its electronic structure in comparison to Pt nanoparticle. J. Catal. 2021, 397, 13–26.

50

Meng, G.; Zhang, J.; Li, X. Y.; Wang, D. S.; Li, Y. D. Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Appl. Phys. Rev. 2021, 8, 021321.

51

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

52

Yin, J.; Fan, Q. H.; Li, Y. X.; Cheng, F. Y.; Zhou, P. P.; Xi, P. X.; Sun, S. H. Ni-C-N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 14546–14549.

53

Li, Z. T.; Wei, L. Q.; Jiang, W. J.; Hu, Z. P.; Luo, H.; Zhao, W. N.; Xu, T.; Wu, W. T.; Wu, M. B.; Hu, J. S. Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. Appl. Catal. B:Environ. 2019, 251, 240–246.

54

Wu, M. J.; Zhang, G. X.; Chen, N.; Hu, Y. F.; Regier, T.; Rawach, D.; Sun, S. H. Self-reconstruction of Co/Co2P heterojunctions confined in N-doped carbon nanotubes for zinc-air flow batteries. ACS Energy Lett. 2021, 6, 1153–1161.

55

Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li, Y. D. Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78–110.

56

Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

57

Ma, J. J.; Li, J. S.; Wang, R. G.; Yang, Y. Y.; Yin, P. F.; Mao, J.; Ling, T.; Qiao, S. Z. Hierarchical porous S-doped Fe-N-C electrocatalyst for high-power-density zinc-air battery. Mater. Today Energy 2021, 19, 100624.

58

Zhou, T. P.; Zhang, N.; Wu, C. Z.; Xie, Y. Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 2020, 13, 1132–1153.

Publication history
Copyright
Acknowledgements

Publication history

Received: 02 August 2021
Revised: 23 August 2021
Accepted: 25 August 2021
Published: 18 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21501096 and 22075223), Natural Science Foundation of Jiangsu (Nos. BK20150086 and BK20201120), Foundation of the Jiangsu Education Committee (No. 15KJB150020), the Six Talent Peaks Project in Jiangsu Province (No. JY-087), and Innovation Project of Jiangsu Province.

Return