Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Interfacial atomic configuration between dual-metal active species and nitrogen-carbon substrates is of great importance for improving the intrinsic activity of catalysts toward oxygen reduction reaction (ORR). Thus, from the atomic-scale engineering we develop a high intrinsic activity ORR catalyst in terms of incorporating atomically dispersed dual Fe centers (single Fe atoms and ultra-small Fe atomic clusters) into bamboo-like N-doped carbon nanotubes. Benefiting from atomically dispersed dual-Fe centers on the atomic interface of Fe-Nx/carbon nanotubes, the fabricated dual Fe centers catalyst exhibits an extremely high ORR activity (Eonset = 1.006 V; E1/2 = 0.90 V), beyond state-of-the-art Pt/C. Remarkably, this catalyst also shows a superior kinetic current density of 19.690 mA·cm−2, which is 7 times that of state-of-the-art Pt/C. Additionally, based on the excellent catalyst, the primary Zn-air battery reveals a high power density up to 137 mW·cm−2 and sufficient potential cycling stability (at least 25 h). Undoubtedly, given the unique structure–activity relationship of dual-Fe active species and metal-nitrogen-carbon substrates, the catalyst will show great prospects in highly efficient electrochemical energy conversion devices.
Huang, L.; Zaman, S.; Tian, X. L.; Wang, Z. T.; Fang, W. S.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311–322.
Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Ma, T. Y.; Liu, Z. Q. Redox-inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 13291–13296.
Ma, Z.; Cano, Z. P.; Yu, A. P.; Chen, Z. W.; Jiang, G. P.; Fu, X. G.; Yang, L.; Wu, T. P.; Bai, Z. Y.; Lu, J. Enhancing oxygen reduction activity of Pt-based electrocatalysts: From theoretical mechanisms to practical methods. Angew. Chem., Int. Ed. 2020, 59, 18334–18348.
Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.
Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.
Hu, Y. M.; Zhu, M. Z.; Luo, X.; Wu, G.; Chao, T. T.; Qu, Y. T.; Zhou, F. Y.; Sun, R. B.; Han, X.; Li, H. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem. Int. Ed. 2021, 60, 6533–6538.
Li, Z. J.; Yao, Y. C.; Niu, Y.; Zhang, W. J.; Chen, B. B.; Zeng, X. R.; Zou, J. Z. Multi-heteroatom-doped hollow carbon tubes as robust electrocatalysts for the oxygen reduction reaction, oxygen and hydrogen evolution reaction. Chem. Eng. J. 2021, 418, 129321.
Lin, L. X.; Miao, N. H.; Wallace, G. G.; Chen, J.; Allwood, D. A. Engineering carbon materials for electrochemical oxygen reduction reactions. Adv. Energy Mater. 2021, 11, 2100695.
Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. Int. Ed. 2021, 60, 19085–19091.
Wang, Y.; Li, J; Wei, Z. D. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 8194–8209.
Huang, L.; Zheng, X. L.; Gao, G.; Zhang, H.; Rong, K.; Chen, J. X.; Liu, Y. Q.; Zhu, X. Y.; Wu, W. W.; Wang, Y. et al. Interfacial electron engineering of palladium and molybdenum carbide for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 6933–6941.
Zhang, C. L.; Liu, J. T.; Li, H.; Qin, L.; Cao, F. H.; Zhang, W. The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Appl. Catal. B: Environ. 2020, 261, 118224.
Guo, J. N.; Xu, N. N.; Wang, Y. X.; Wang, X.; Huang, H. T.; Qiao, J. L. Bimetallic sulfide with controllable Mg substitution anchored on CNTs as hierarchical bifunctional catalyst toward oxygen catalytic reactions for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 37164–37172.
Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.
Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.
Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.
Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.
Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651–1657.
Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.
Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, L.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.
Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.
Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.
Zhang, J.; Huang, Q. A.; Wang, J.; Wang, J.; Zhang. J. J.; Zhao. Y. F. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798.
Zhang, W. Y.; Chao, Y. G.; Zhang, W. S.; Zhou, J. H.; Lv, F.; Wang, K.; Lin, F. X.; Luo, H.; Li, J.; Tong, M. P. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 2021, 2102576.
Jin, Z. Y.; Li, P. P.; Meng, Y.; Fang, Z. W.; Xiao, D.; Yu, G. H. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 2021, 4, 615–622.
Jin, H. H.; Zhao, X.; Liang, L. H.; Ji, P. X.; Liu, B. S.; Hu, C. X.; He, D. P.; Mu, S. C. Sulfate ions induced concave porous S-N co-doped carbon confined FeCx nanoclusters with Fe-N4 sites for efficient oxygen reduction in alkaline and acid media. Small 2021, 17, 2101001.
Wang, Y. C.; Liu, Y. S.; Yang, H. F.; Liu, Y.; Wu, K. H.; Yang, G. C. Ionic liquid derived Fe, N, B co-doped bamboo-like carbon nanotubes as an efficient oxygen reduction catalyst. J. Colloid Interface Sci. 2020, 579, 637–644.
Jiang, M.; Cao, X. P.; Zhu, D. D.; Duan, Y. X.; Zhang, J. M. Hierarchically porous N-doped carbon derived from ZIF-8 nanocomposites for electrochemical applications. Electrochim. Acta 2016, 196, 699–707.
Wang, M. R.; Yang, W. J.; Li, X. Z.; Xu, Y. S.; Zheng, L. R.; Su, C. L.; Liu, B. Atomically dispersed Fe-heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett. 2021, 6, 379–386.
Zhang, S. L.; Lu, X. F.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. Engineering platinum-cobalt nano-alloys in porous nitrogen-doped carbon nanotubes for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19068–19073.
Mi, J. L.; Liang, J. H.; Yang, L. P.; Wu, B.; Liu, L. Effect of Zn on size control and oxygen reduction reaction activity of Co nanoparticles supported on N-doped carbon nanotubes. Chem. Mater. 2019, 31, 8864–8874.
Lu, Q.; Yu, J.; Zou, X. H.; Liao, K. M.; Tan, P.; Zhou, W.; Ni, M.; Shao, Z. P. Self-catalyzed growth of Co, N-Codoped CNTs on carbon-encased CoSx surface: A noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries. Adv. Funct. Mater. 2019, 29, 1904481.
Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.
Zhou, H.; Yang, T.; Kou, Z. K.; Shen, L.; Zhao, Y. F.; Wang, Z. Y.; Wang, X. Q.; Yang, Z. K.; Du, J. Y.; Xu, J. et al. Negative pressure pyrolysis induced highly accessible single sites dispersed on 3D graphene frameworks for enhanced oxygen reduction. Angew. Chem., Int. Ed. 2020, 59, 20465–20469.
Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.
Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.
Wang, J.; Liu, W.; Luo, G.; Li, Z. J.; Zhao, C.; Zhang, H. R.; Zhu, M. Z.; Xu, Q.; Wang, X. Q.; Zhao, C. M. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.
Yuan, S.; Pu, Z. H.; Yu, J.; Amiinu, I. S.; Zhou, J. W.; Liang, Q. R.; Yang, J. L.; He, D. P.; Hu, Z. Y.; Van Tendeloo, G. et al. A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy 2019, 59, 472–480.
Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.
Wang, J.; Duan, X. G.; Gao, J.; Shen, Y.; Feng, X. H.; Yu, Z. J.; Tan, X. Y.; Liu, S. M.; Wang. S. B. Roles of structure defect, oxygen groups and heteroatom doping on carbon in nonradical oxidation of water contaminants. Water Res. 2020, 185, 116244.
Wang, C.; Liu, Y. P.; Li, Z. F.; Wang, L. K.; Niu, X. L.; Sun, P. Novel space-confinement synthesis of two-dimensional Fe, N-Codoped graphene bifunctional oxygen electrocatalyst for rechargeable air-cathode. Chem. Eng. J. 2021, 411, 128492.
Wei, X. Q.; Luo, X.; Wang, H. J.; Gu, W. L.; Cai, W. W.; Lin, Y. H.; Zhu, C. Z. Highly-defective Fe-N-C catalysts towards pH-universal oxygen reduction reaction. Appl. Catal. B: Environ. 2020, 263, 118347.
Zhang, X. B.; Han, X.; Jiang, Z.; Xu, J.; Chen, L. N.; Xue, Y. K.; Nie, A. M.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. Atomically dispersed hierarchically ordered porous Fe-N-C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery. Nano Energy 2020, 71, 104547.
Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.
Wagner, S.; Auerbach, H.; Tait, C. E.; Martinaiou, I.; Kumar, S. C. N.; Kübel, C.; Sergeev, I.; Wille, H. C.; Behrends, J.; Wolny, J. A. et al. Elucidating the structural composition of an Fe-N-C catalyst by nuclear- and electron-resonance techniques. Angew. Chem., Int. Ed. 2019, 58, 10486–10492.
Wang, T. L.; Chutia, A.; Brett, D. J. L.; Shearing, P. R.; He, G. J.; Chai, G. L.; Parkin, I. P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci. 2021, 14, 2639–2669.
Zhu, B.; Lu, J.; Sakaki, S. Catalysis of core-shell nanoparticle M@Pt (M=Co and Ni) for oxygen reduction reaction and its electronic structure in comparison to Pt nanoparticle. J. Catal. 2021, 397, 13–26.
Meng, G.; Zhang, J.; Li, X. Y.; Wang, D. S.; Li, Y. D. Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Appl. Phys. Rev. 2021, 8, 021321.
Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.
Yin, J.; Fan, Q. H.; Li, Y. X.; Cheng, F. Y.; Zhou, P. P.; Xi, P. X.; Sun, S. H. Ni-C-N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 14546–14549.
Li, Z. T.; Wei, L. Q.; Jiang, W. J.; Hu, Z. P.; Luo, H.; Zhao, W. N.; Xu, T.; Wu, W. T.; Wu, M. B.; Hu, J. S. Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. Appl. Catal. B:Environ. 2019, 251, 240–246.
Wu, M. J.; Zhang, G. X.; Chen, N.; Hu, Y. F.; Regier, T.; Rawach, D.; Sun, S. H. Self-reconstruction of Co/Co2P heterojunctions confined in N-doped carbon nanotubes for zinc-air flow batteries. ACS Energy Lett. 2021, 6, 1153–1161.
Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li, Y. D. Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78–110.
Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.
Ma, J. J.; Li, J. S.; Wang, R. G.; Yang, Y. Y.; Yin, P. F.; Mao, J.; Ling, T.; Qiao, S. Z. Hierarchical porous S-doped Fe-N-C electrocatalyst for high-power-density zinc-air battery. Mater. Today Energy 2021, 19, 100624.
Zhou, T. P.; Zhang, N.; Wu, C. Z.; Xie, Y. Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 2020, 13, 1132–1153.