Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
MAPbBr3 (MA = CH3NH3+) doping with bismuth increases electric conductivity, charge carrier density and photostability, reduces toxicity, and expands light absorption. However, Bi doping shortens excited-state lifetimes due to formation of DY− charge recombination centers. Using nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that the DY− center forms a deep, highly localized hole trap, which accelerates nonradiative relaxation ten-fold and is responsible for 90% of carrier losses. Hole trapping occurs by coupling between the valence band and the trap state, facilitated by the Br atoms surrounding the Bi dopant. Passivation of the DY− center with chlorines heals the local geometry distortion, eliminates the trap state, and makes the carrier lifetimes longer than even in pristine MAPbBr3. The decreased charge recombination arises from reduced nonadiabatic coupling and shortened coherence time, due to diminished electron–hole overlap around the passivated defect. Our study demonstrates accelerated nonradiative recombination in Bi-doped MAPbBr3, suggests a strategy for defect passivation and reduction of nonradiative energy losses, and provides atomistic insights into unusual defect properties of metal halide perovskites needed for rational design of high-performance perovskite solar cells and optoelectronic devices.
Yin, W. J.; Shi, T. T.; Yan, Y. F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658.
Chen, H.; Wang, H.; Wu, J.; Wang, F.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Li, S. B.; Penty, R. V.; White, I. H. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020, 13, 1997–2018.
Saparov, B.; Mitzi, D. B. Organic–inorganic perovskites: Structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558–4596.
Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 7, 1749–1758.
Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.
Luo, S. Q.; Daoud, W. A. Recent progress in organic–inorganic halide perovskite solar cells: Mechanisms and material design. J. Mater. Chem. A 2015, 3, 8992–9010.
Qiu, X. C.; Liu, Y.; Li, W. W.; Hu, Y. Y. Traps in Metal Halide Perovskites: Characterization and Passivation. Nanoscale 2020, 12, 22425–22451.
Yin, W. J.; Yang, J. H.; Kang, J.; Yan, Y. F.; Wei, S. H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942.
Xie, Y. M.; Ma, C. Q.; Xu, X. W.; Li, M. L.; Ma, Y. H.; Wang, J.; Chandran, H. T.; Lee, C. S.; Tsang, S. W. Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering. Nano Res. 2019, 12, 1033–1039.
Turren-Cruz, S. H.; Saliba, M.; Mayer, M. T.; Juárez-Santiesteban, H.; Mathew, X.; Nienhaus, L.; Tress, W.; Erodici, M. P.; Sher, M. J.; Bawendi, M. G. et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ. Sci. 2018, 11, 78–86.
Hedley, G. J.; Quarti, C.; Harwell, J.; Prezhdo, O. V.; Beljonne, D.; Samuel, I. D. W. Hot-hole cooling controls the initial ultrafast relaxation in methylammonium lead iodide perovskite. Sci. Rep. 2018, 8, 8115.
Si, J. J.; Liu, Y.; Wang, N. N.; Xu, M.; Li, J.; He, H. P.; Wang, J. P.; Jin, Y. Z. Green light-emitting diodes based on hybrid perovskite films with mixed cesium and methylammonium cations. Nano Res. 2017, 10, 1329–1335.
Cao, F. R.; Liao, Q. L.; Deng, K. M.; Chen, L.; Li, L.; Zhang, Y. Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors. Nano Res. 2018, 11, 1722–1730.
Wu, Y. X.; Li, J.; Xu, J.; Du, Y. Y.; Huang, L. K.; Ni, J.; Cai, H. K.; Zhang, J. J. Organic–inorganic hybrid CH3NH3PbI3 perovskite materials as channels in thin-film field-effect transistors. RSC Adv. 2016, 6, 16243–16249.
Mikosch, A.; Ciftci, S.; Tainter, G.; Shivanna, R.; Haehnle, B.; Deschler, F.; Kuehne, A. J. C. Laser emission from self-assembled colloidal crystals of conjugated polymer particles in a metal-halide perovskite matrix. Chem. Mater. 2019, 31, 2590–2596.
Huang, W. X.; Sadhu, S.; Ptasinska, S. Heat- and gas-induced transformation in CH3NH3PbI3 perovskites and its effect on the efficiency of solar cells. Chem. Mater. 2017, 29, 8478–8485.
Yu, W. J.; Sun, X. R.; Xiao, M.; Hou, T.; Liu, X.; Zheng, B. L.; Yu, H.; Zhang, M.; Huang, Y. L.; Hao, X. J. Recent advances on interface engineering of perovskite solar cells. Nano Res. 2021, inpress.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
Mao, L. L.; Ke, W. J.; Pedesseau, L.; Wu, Y. L.; Katan, C.; Even, J.; Wasielewski, M. R.; Stoumpos, C. C.; Kanatzidis, M. G. Hybrid dion-jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 2018, 140, 3775–3783.
Dong, D. D.; Deng, H.; Hu, C.; Song, H. B.; Qiao, K. K.; Yang, X. K.; Zhang, J.; Cai, F. S.; Tang, J.; Song, H. S. Bandgap tunable Csx(CH3NH3)1−xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices. Nanoscale 2017, 9, 1567–1574.
Yavari, M.; Ebadi, F.; Meloni, S.; Wang, Z. S.; Yang, T. C. J.; Sun, S. J.; Schwartz, H.; Wang, Z. W.; Niesen, B.; Durantini, J. et al. How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. J. Mater. Chem. A 2019, 7, 23838–23853.
Xiong, Y.; Xu, L.; Wu, P.; Sun, L.; Xie, G.; Hu, B. Bismuth doping-induced stable seebeck effect based on MAPbI3 polycrystalline thin films. Adv. Funct. Mater. 2019, 29, 1900615.
Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem., Int. Ed. 2014, 53, 3151–3157.
Zhou, Y.; Chen, J.; Bakr, O. M.; Sun, H. T. Metal-doped lead halide perovskites: Synthesis, properties, and optoelectronic applications. Chem. Mater. 2018, 30, 6589–6613.
He, J. L.; Vasenko, A. S.; Long, R.; Prezhdo, O. V. Halide composition controls electron-hole recombination in cesium-lead halide perovskite quantum dots: A time domain ab initio study. J. Phys. Chem. Lett. 2018, 9, 1872–1879.
Choi, H.; Jeong, J.; Kim, H. B.; Kim, S.; Walker, B.; Kim, G. H.; Kim, J. Y. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80–85.
McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155.
Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.
Shi, Z. J.; Guo, J.; Chen, Y. H.; Li, Q.; Pan, Y. F.; Zhang, H. J.; Xia, Y. D.; Huang, W. Lead-free organic–inorganic hybrid perovskites for photovoltaic applications: Recent advances and perspectives. Adv. Mater. 2017, 29, 1605005.
Nagane, S.; Ghosh, D.; Hoye, R. L. Z.; Zhao, B. D.; Ahmad, S.; Walker, A. B.; Islam, M. S.; Ogale, S.; Sadhanala, A. Lead-free perovskite semiconductors based on germanium-tin solid solutions: Structural and optoelectronic properties. J. Phys. Chem. C 2018, 122, 5940–5947.
Yu, H.; Wang, F.; Xie, F. Y.; Li, W. W.; Chen, J.; Zhao, N. The role of chlorine in the formation process of "CH3NH3PbI3−xClx" perovskite. Adv. Funct. Mater. 2014, 24, 7102–7108.
Ma, Y. Z.; Zheng, L. L.; Chung, Y. H.; Chu, S. S.; Xiao, L. X.; Chen, Z. J.; Wang, S. F.; Qu, B.; Gong, Q. H.; Wu, Z. X. et al. A Highly efficient mesoscopic solar cell based on CH3NH3PbI3−xClx fabricated via sequential solution deposition. Chem. Commun. 2014, 50, 12458–12461.
Abdelhady, A. L.; Saidaminov, M. I.; Murali, B.; Adinolfi, V.; Voznyy, O.; Katsiev, K.; Alarousu, E.; Comin, R.; Dursun, I.; Sinatra, L. et al. Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. J. Phys. Chem. Lett. 2016, 7, 295–301.
Kour, R.; Arya, S.; Verma, S.; Gupta, J.; Bandhoria, P.; Bharti, V.; Datt, R.; Gupta, V. Potential substitutes for replacement of lead in perovskite solar cells: A review. Global Challenges 2019, 3, 1900050.
Han, L. P.; Wu, L. L.; Liu, C.; Zhang, J. Q. Doping-enhanced visible-light absorption of CH3NH3PbBr3 by the Bi3+-induced impurity band without sacrificing a band gap. J. Phys. Chem. C 2019, 123, 8578–8587.
Yamada, Y.; Hoyano, M.; Oto, K.; Kanemitsu, Y. Effects of impurity doping on photoluminescence properties of APbX3 lead halide perovskites. Phys. Status Solidi B 2019, 256, 1800545.
Nayak, P. K.; Sendner, M.; Wenger, B.; Wang, Z. P.; Sharma, K.; Ramadan, A. J.; Lovrinčić, R.; Pucci, A.; Madhu, P. K.; Snaith, H. J. Impact of Bi3+ heterovalent doping in organic–inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 2018, 140, 574–577.
Bartolomé, J.; Climent-Pascual, E.; Redondo-Obispo, C.; Zaldo, C.; Álvarez, Á. L.; De Andrés, A.; Coya, C. Huge photostability enhancement in bismuth-doped methylammonium lead iodide hybrid perovskites by light-induced transformation. Chem. Mater. 2019, 31, 3662–3671.
Meng, R.; Wu, G. B.; Zhou, J. Y.; Zhou, H. Q.; Fang, H. H.; Loi, M. A.; Zhang, Y. Understanding the impact of bismuth heterovalent doping on the structural and photophysical properties of CH3NH3PbBr3 halide perovskite crystals with near-IR photoluminescence. Chem. —Eur. J. 2019, 25, 5480–5488.
Yamada, Y.; Hoyano, M.; Akashi, R.; Oto, K.; Kanemitsu, Y. Impact of chemical doping on optical responses in bismuth-doped CH3NH3PbBr3 single crystals: Carrier lifetime and photon recycling. J. Phys. Chem. Lett. 2017, 8, 5798–5803.
Ulatowski, A. M.; Wright, A. D.; Wenger, B.; Buizza, L. R. V.; Motti, S. G.; Eggimann, H. J.; Savill, K. J.; Borchert, J.; Snaith, H. J.; Johnston, M. B. et al. Charge-carrier trapping dynamics in bismuth-doped thin films of MAPbBr3 perovskite. J. Phys. Chem. Lett. 2020, 11, 3681–3688.
Zhou, Y.; Yong, Z. J.; Zhang, K. C.; Liu, B. M.; Wang, Z. W.; Hou, J. S.; Fang, Y. Z.; Zhou, Y.; Sun, H. T.; Song, B. Ultrabroad photoluminescence and electroluminescence at new wavelengths from doped organometal halide perovskites. J. Phys. Chem. Lett. 2016, 7, 2735–2741.
Haque, A.; Li, J. L.; Abdelhady, A. L.; Saidaminov, M. I.; Baran, D.; Bakr, O. M.; Wei, S. H.; Wu, T. Transition from positive to negative photoconductance in doped hybrid perovskite semiconductors. Adv. Opt. Mater. 2019, 7, 1900865.
Li, J. L.; Yang, J. X.; Wu, T.; Wei, S. H. Formation of DY Center as n-type limiting defects in octahedral semiconductors: The case of Bi-doped hybrid halide perovskites. J. Mater. Chem. C 2019, 7, 4230–4234.
Zhang, M.; Yu, H.; Lyu, M. Q.; Wang, Q.; Yun, J. H.; Wang, L. Z. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3−xClx films. Chem. Commun. 2014, 50, 11727–11730.
Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G. et al. MAPbI3−xClx mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties. Chem. Mater. 2013, 25, 4613–4618.
Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151–157.
Sun, S. J.; Fang, Y. N.; Kieslich, G.; White, T. J.; Cheetham, A. K. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. J. Mater. Chem. A 2015, 3, 18450–18455.
Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.
Craig, C. F.; Duncan, W. R.; Prezhdo, O. V. Trajectory surface hopping in the time-dependent kohn-sham approach for electron-nuclear dynamics. Phys. Rev. Lett. 2005, 95, 163001.
Schwartz, B. J.; Bittner, E. R.; Prezhdo, O. V.; Rossky, P. J. Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations. J. Chem. Phys. 1996, 104, 5942–5955.
Habenicht, B. F.; Prezhdo, O. V. Nonradiative quenching of fluorescence in a semiconducting carbon nanotube: A time-domain ab initio study. Phys. Rev. Lett. 2008, 100, 197402.
Wu, B.; Nguyen, H. T.; Ku, Z. L.; Han, G. F.; Giovanni, D.; Mathews, N.; Fan, H. J.; Sum, T. C. Discerning the surface and bulk recombination kinetics of organic-inorganic halide perovskite single crystals. Adv. Energy Mater. 2016, 6, 1600551.
Yamada, T.; Yamada, Y.; Nishimura, H.; Nakaike, Y.; Wakamiya, A.; Murata, Y.; Kanemitsu, Y. Fast free-carrier diffusion in CH3NH3PbBr3 single crystals revealed by time-resolved one- and two-photon excitation photoluminescence spectroscopy. Adv. Electron. Mater. 2016, 2, 1500290.
Wang, K. H.; Li, L. C.; Shellaiah, M.; Sun, K. W. Structural and photophysical properties of methylammonium lead tribromide (MAPbBr3) single crystals. Sci. Rep. 2017, 7, 13643.
Jaeger, H. M.; Fischer, S.; Prezhdo, O. V. Decoherence-induced surface hopping. J. Chem. Phys. 2012, 137, 22A545.
Fischer, S. A.; Habenicht, B. F.; Madrid, A. B.; Duncan, W. R.; Prezhdo, O. V. Regarding the validity of the time-dependent kohn-sham approach for electron-nuclear dynamics via trajectory surface hopping. J. Chem. Phys. 2011, 134, 024102.
Akimov, A. V.; Prezhdo, O. V. The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems. J. Chem. Theory Comput. 2013, 9, 4959–4972.
Akimov, A. V.; Prezhdo, O. V. Advanced capabilities of the PYXAID program: Integration schemes, decoherence effects, multiexcitonic states, and field-matter interaction. J. Chem. Theory Comput. 2014, 10, 789–804.
Wang, S. Y.; Fang, W. H.; Long, R. Hydrogen passivated silicon grain boundaries greatly reduce charge recombination for improved silicon/perovskite tandem solar cell performance: Time domain Ab Initio analysis. J. Phys. Chem. Lett. 2019, 10, 2445–2452.
Wei, Y. Q.; Long, R. Grain boundaries are benign and suppress nonradiative electron-hole recombination in monolayer black phosphorus: A time-domain ab initio study. J. Phys. Chem. Lett. 2018, 9, 3856–3862.
Yang, Y. T.; Fang, W. H.; Benderskii, A.; Long, R.; Prezhdo, O. V. Strain controls charge carrier lifetimes in monolayer WSe2: Ab initio time domain analysis. J. Phys. Chem. Lett. 2019, 10, 7732–7739.
Wang, X. L.; Long, R. Oxidation notably accelerates nonradiative electron-hole recombination in MoS2 by different mechanisms: Time-domain Ab Initio analysis. J. Phys. Chem. Lett. 2020, 11, 4086–4092.
Yaffe, O.; Guo, Y. S.; Tan, L. Z.; Egger, D. A.; Hull, T.; Stoumpos, C. C.; Zheng, F.; Heinz, T. F.; Kronik, L.; Kanatzidis, M. G. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 2017, 118, 13600.
Zhang, Z. S.; Fang, W. H.; Long, R.; Prezhdo, O. V. Exciton dissociation and suppressed charge recombination at 2D perovskite edges: Key roles of unsaturated halide bonds and thermal disorder. J. Am. Chem. Soc. 2019, 141, 15557–15566.
Shi, R.; Zhang, Z. S.; Fang, W. H.; Long, R. Charge localization control of electron-hole recombination in multilayer two-dimensional dion-jacobson hybrid perovskites. J. Mater. Chem. A 2020, 8, 9168–9176.
Wang, Y. T.; Fang, W. H.; Long, R.; Prezhdo, O. V. Symmetry breaking at MAPbI3 perovskite grain boundaries suppresses charge recombination: Time-domain ab initio analysis. J. Phys. Chem. Lett. 2019, 10, 1617–1623.
Wang, Y. T.; He, J. L.; Yang, Y. C.; Zhang, Z. K.; Long, R. Chlorine passivation of grain boundary suppresses electron-hole recombination in CsPbBr3 perovskite by nonadiabatic molecular dynamics simulation. ACS Appl. Energy Mater. 2019, 2, 3419–3426.
Shi, R.; Vasenko, A. S.; Long, R.; Prezhdo, O. V. Edge influence on charge carrier localization and lifetime in CH3NH3PbBr3 perovskite: Ab Initio quantum dynamics simulation. J. Phys. Chem. Lett. 2020, 11, 9100–9109.
Qiao, L.; Fang, W. H.; Long, R.; Prezhdo, O. V. Atomic model for alkali metal passivation of point defects at perovskite grain boundaries. ACS Energy Lett. 2020, 5, 3813–3820.
Qiao, L.; Fang, W. H.; Long, R.; Prezhdo, O. V. Photoinduced dynamics of charge carriers in metal halide perovskites from an atomistic perspective. J. Phys. Chem. Lett. 2020, 11, 7066–7082.
He, J. L.; Fang, W. H.; Long, R. Unravelling the effects of oxidation state of interstitial iodine and oxygen passivation on charge trapping and recombination in CH3NH3PbI3 perovskite: A time-domain ab initio study. Chem. Sci. 2019, 10, 10079–10088.
Stier, W.; Duncan, W. R.; Prezhdo, O. V. Thermally assisted sub-10 fs electron transfer in dye-sensitized nanocrystalline TiO2 solar cells. Adv. Mater. 2004, 16, 240–244.
Long, R.; Casanova, D.; Fang, W. H.; Prezhdo, O. V. Donor-acceptor interaction determines the mechanism of photoinduced electron injection from graphene quantum dots into TiO2: π-stacking supersedes covalent bonding. J. Am. Chem. Soc. 2017, 139, 2619–2629.
Akimov, A. V.; Asahi, R.; Jinnouchi, R.; Prezhdo, O. V. What makes the photocatalytic CO2 reduction on N-doped Ta2O5 efficient: Insights from nonadiabatic molecular dynamics. J. Am. Chem. Soc. 2015, 137, 11517–11525.
Zhou, Z. H.; Liu, J.; Long, R.; Li, L. Q.; Guo, L. J.; Prezhdo, O. V. Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non-adiabatic molecular dynamics. J. Am. Chem. Soc. 2017, 139, 6707–6717.
Chu, W. B.; Saidi, W. A.; Prezhdo, O. V. Long-lived hot electron in a metallic particle for plasmonics and catalysis: Ab initio nonadiabatic molecular dynamics with machine learning. Acs Nano 2020, 14, 10608–10615.
Li, W.; Long, R.; Tang, J. F.; Prezhdo, O. V. Influence of defects on excited-state dynamics in lead halide perovskites: Time-domain ab initio studies. J. Phys. Chem. Lett. 2019, 10, 3788–3804.
Li, W.; She, Y. L.; Vasenko, A. S.; Prezhdo, O. V. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. Nanoscale 2021, 13, 10239–10265.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
Chu, W. B.; Zheng, Q. J.; Akimov, A. V.; Zhao, J.; Saidi, W. A.; Prezhdo, O. V. Accurate computation of nonadiabatic coupling with projector augmented-wave pseudopotentials. J. Phys. Chem. Lett. 2020, 11, 10073–10080.
Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.
Tavernelli, I.; Curchod, B. F. E.; Rothlisberger, U. On nonadiabatic coupling vectors in time-dependent density functional theory. J. Chem. Phys. 2009, 131, 196101.
Hu, C. P.; Hirai, H.; Sugino, O. Nonadiabatic couplings from time-dependent density functional theory. II. Successes and challenges of the pseudopotential approximation. J. Chem. Phys. 2008, 128, 154111.
Reeves, K. G.; Schleife, A.; Correa, A. A.; Kanai, Y. Role of surface termination on hot electron relaxation in silicon quantum dots: A first-principles dynamics simulation study. Nano Lett. 2015, 15, 6429–6433.
Chadi, D. J.; Chang, K. J. Theory of the atomic and electronic structure of DX centers in GaAs and AlXGA1−XAS alloys. Phys. Rev. Lett. 1988, 61, 873–876.
Zhang, S. B.; Chadi, D. J. Stability of DX centers in AlXGA1−XAS alloys. Phys. Rev. B 1990, 42, 7174–7177.
Espinosa, F. J.; De Leon, J. M.; Conradson, S. D.; Peña, J. L.; Zapata-Torres, M. Observation of a photoinduced lattice relaxation in CdTe: In. Phys. Rev. Lett. 1999, 83, 3446–3449.
Chu, W. B.; Saidi, W. A.; Zhao, J.; Prezhdo, O. V. Soft lattice and defect covalency rationalize tolerance of β-CsPbI3 perovskite solar cells to native defects. Angew. Chem., Int. Ed. 2020, 59, 6435–6441.
Tang, W. D.; Zhang, J. S.; Ratnasingham, S.; Liscio, F.; Chen, K.; Liu, T. J.; Wan, K. N.; Galindez, E. S.; Bilotti, E.; Reece, M. et al. Substitutional doping of hybrid organic–inorganic perovskite crystals for thermoelectrics. J. Mater. Chem. A 2020, 8, 13594–13599.
Zhao, X.; Long, R. Benign effects of twin boundaries on charge carrier lifetime in metal halide perovskites by a time-domain study. J. Phys. Chem. Lett. 2021, 12, 8575–8582.
Li, W.; Vasenko, A. S.; Tang, J. F.; Prezhdo, O. V. Anharmonicity extends carrier lifetimes in lead halide perovskites at elevated temperatures. J. Phys. Chem. Lett. 2019, 10, 6219–6226.
Balan, A. D.; Eshet, H.; Olshansky, J. H.; Lee, Y. V.; Rabani, E.; Alivisatos, A. P. Effect of thermal fluctuations on the radiative rate in core/shell quantum dots. Nano Lett. 2017, 17, 1629–1636.
Habib, M.; Kar, M.; Pal, S.; Sarkar, P. Role of chalcogens in the exciton relaxation dynamics of chalcogenol-functionalized CdSe QD: A time-domain atomistic simulation. Chem. Mater. 2019, 31, 4042–4050.
Arfin, H.; Kshirsagar, A. S.; Kaur, J.; Mondal, B.; Xia, Z. G.; Chakraborty, S.; Nag, A. Ns2 electron (Bi3+ and Sb3+) doping in lead-free metal halide perovskite derivatives. Chem. Mater. 2020, 32, 10255–10267.
Kitazawa, N.; Watanabe, Y.; Nakamura, Y. Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. J. Mater. Sci. 2002, 37, 3585–3587.
Yin, W. J.; Yan, Y. F.; Wei, S. H. Anomalous alloy properties in mixed halide perovskites. J. Phys. Chem. Lett. 2014, 5, 3625–3631.
Macdonald, D.; Geerligs, L. J. Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon. Appl. Phys. Lett. 2004, 85, 4061–4063.
Rodriguez, J. B.; Plis, E.; Bishop, G.; Sharma, Y. D.; Kim, H.; Dawson, L. R.; Krishna, S. nBn structure based on In As/Ga Sb type-II strained layer superlattices. Appl. Phys. Lett. 2007, 91, 043514.
Brandt, R. E.; Poindexter, J. R.; Gorai, P.; Kurchin, R. C.; Hoye, R. L. Z.; Nienhaus, L.; Wilson, M. W. B.; Polizzotti, J. A.; Sereika, R.; Žaltauskas, R. et al. Searching for "defect-tolerant" photovoltaic materials: Combined theoretical and experimental screening. Chem. Mater. 2017, 29, 4667–4674.
Kilina, S. V.; Neukirch, A. J.; Habenicht, B. F.; Kilin, D. S.; Prezhdo, O. V. Quantum zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots. Phys. Rev. Lett. 2013, 110, 180404.
Prezhdo, O. V. Quantum anti-zeno acceleration of a chemical reaction. Phys. Rev. Lett. 2000, 85, 4413–4417.
Xie, L. Q.; Zhang, T. Y.; Chen, L.; Guo, N. J.; Wang, Y.; Liu, G. K.; Wang, J. R.; Zhou, J. Z.; Yan, J. W.; Zhao, Y. X. et al. Organic–inorganic interactions of single crystalline organolead halide perovskites studied by raman spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 18112–18118.
Leguy, A. M. A.; Goñi, A. R.; Frost, J. M.; Skelton, J.; Brivio, F.; Rodríguez-Martínez, X.; Weber, O. J.; Pallipurath, A.; Alonso, M. I.; Campoy-Quiles, M. et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 2016, 18, 27051–27066.
Ledinský, M.; Löper, P.; Niesen, B.; Holovský, J.; Moon, S. J.; Yum, J. H.; De Wolf, S.; Fejfar, A.; Ballif, C. Raman spectroscopy of organic–inorganic halide perovskites. J. Phys. Chem. Lett. 2015, 6, 401–406.
Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; De Angelis, F. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of theory and experiment. J. Phys. Chem. Lett. 2014, 5, 279–284.
Li, C.; Chen, X.; Li, N.; Liu, J. L.; Yuan, B. L.; Li, Y. J.; Wang, M.; Xu, F.; Wu, Y. Q.; Cao, B. Q. Highly conductive N-type CH3NH3PbI3 single crystals doped with bismuth donors. J. Mater. Chem. C 2020, 8, 3694–3704.
Madrid, A. B.; Hyeon-Deuk, K.; Habenicht, B. F.; Prezhdo, O. V. Phonon-induced dephasing of excitons in semiconductor quantum dots: Multiple exciton generation, fission, and luminescence. ACS Nano 2009, 3, 2487–2494.
Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater. 2015, 5, 1400812.
Li, J. Q.; Yuan, Z. K.; Chen, S. Y.; Gong, X. G.; Wei, S. H. Effective and noneffective recombination center defects in Cu2ZnSnS4: Significant difference in carrier capture cross sections. Chem. Mater. 2019, 31, 826–833.
Habenicht, B. F.; Kamisaka, H.; Yamashita, K.; Prezhdo, O. V. Ab initio study of vibrational dephasing of electronic excitations in semiconducting carbon nanotubes. Nano Lett. 2007, 7, 3260–3265.
Hyeon-Deuk, K.; Prezhdo, O. V. Multiple exciton generation and recombination dynamics in small Si and CdSe quantum dots: An ab initio time-domain study. Acs Nano 2012, 6, 1239–1250.
Chaban, V. V.; Prezhdo, V. V.; Prezhdo, O. V. Covalent linking greatly enhances photoinduced electron transfer in fullerene-quantum dot nanocomposites: Time-domain ab initio study. J. Phys. Chem. Lett. 2013, 4, 1–6.
Long, R.; Prezhdo, O. V. Asymmetry in the electron and hole transfer at a polymer-carbon nanotube heterojunction. Nano Lett. 2014, 14, 3335–3341.
Li, L. Q.; Long, R.; Bertolini, T.; Prezhdo, O. V. Sulfur adatom and vacancy accelerate charge recombination in MoS2 but by different mechanisms: Time-domain ab initio analysis. Nano Lett. 2017, 17, 7962–7967.
Mannodi-Kanakkithodi, A.; Park, J. S.; Jeon, N.; Cao, D. H.; Gosztola, D. J.; Martinson, A. B. F.; Chan, M. K. Y. Comprehensive computational study of partial lead substitution in methylammonium lead bromide. Chem. Mater. 2019, 31, 3599–3612.
Zhang, L. L.; Vasenko, A. S.; Zhao, J.; Prezhdo, O. V. Mono-elemental properties of 2D black phosphorus ensure extended charge carrier lifetimes under oxidation: Time-domain ab initio analysis. J. Phys. Chem. Lett. 2019, 10, 1083–1091.