Journal Home > Volume 15 , Issue 3

Fenton or photocatalytic degradations of organic contaminants are recognized as promising approaches to address the increasing environmental pollution issues. Herein, we develop the effective synergistic catalysis reaction of Fenton and photocatalysis based on a loofah sponge-like Fe2Ox/C nanocomposite, which exhibits excellent nitrobenzene photocatalytic degradation property. It is noted that Fe2O3 nanoparticles with surface Fe2+ species were encapsulated with an ultrathin carbon layer (denoted as Fe2Ox/C) via a supramolecular self-sacrificing template and following thermal treatment process. The experimental results indicated that the thin layer carbon coating not only inhibited the Fe iron leaching from the Fe2Ox but also prompted the separation and transferring of electrons–hole pairs. The introduction of Fe2Ox/C enables the Fenton reaction to induce a rapid Fe2+/Fe3+ cycle, and meanwhile, together with the photocatalytic reaction to produce continuous active substances for the subsequent degradation catalytic reaction without successive H2O2, resulting in the inexpensive and the effective photocatalytic procedure. As a result, 100% nitrobenzene (100 mg/L) was degraded and 97% of the organic carbon was mineralized in 90 min using the Fe2Ox/C (0.1 g/L) at a low H2O2 dosage (0.50 mM), under air mass (AM) 1.5 irradiation. Theoretical calculations confirmed that the Fe2Ox/C-600 with thin carbon layer promoted the dissociation of H2O2 and the ·OH desorption. The synergistic catalysis of this work may provide new ideas for low-cost and more efficient treatment of pollutants.


menu
Abstract
Full text
Outline
About this article

Supramolecular precursor derived loofah sponge-like Fe2Ox/C for effective synergistic reaction of Fenton and photocatalysis

Show Author's information Chen Zhao1,2Shien Guo3Qi Li1Jianan Liu1Mang Zheng1Xudong Xiao1Baojiang Jiang1( )Honggang Fu1( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China

Abstract

Fenton or photocatalytic degradations of organic contaminants are recognized as promising approaches to address the increasing environmental pollution issues. Herein, we develop the effective synergistic catalysis reaction of Fenton and photocatalysis based on a loofah sponge-like Fe2Ox/C nanocomposite, which exhibits excellent nitrobenzene photocatalytic degradation property. It is noted that Fe2O3 nanoparticles with surface Fe2+ species were encapsulated with an ultrathin carbon layer (denoted as Fe2Ox/C) via a supramolecular self-sacrificing template and following thermal treatment process. The experimental results indicated that the thin layer carbon coating not only inhibited the Fe iron leaching from the Fe2Ox but also prompted the separation and transferring of electrons–hole pairs. The introduction of Fe2Ox/C enables the Fenton reaction to induce a rapid Fe2+/Fe3+ cycle, and meanwhile, together with the photocatalytic reaction to produce continuous active substances for the subsequent degradation catalytic reaction without successive H2O2, resulting in the inexpensive and the effective photocatalytic procedure. As a result, 100% nitrobenzene (100 mg/L) was degraded and 97% of the organic carbon was mineralized in 90 min using the Fe2Ox/C (0.1 g/L) at a low H2O2 dosage (0.50 mM), under air mass (AM) 1.5 irradiation. Theoretical calculations confirmed that the Fe2Ox/C-600 with thin carbon layer promoted the dissociation of H2O2 and the ·OH desorption. The synergistic catalysis of this work may provide new ideas for low-cost and more efficient treatment of pollutants.

Keywords: photocatalysis, Fe2Ox/C , Fenton, synergistic reaction, degradation of nitrobenzene

References(52)

1

Wang, C. C.; Li, J. R.; Lv, X. L.; Zhang, Y. Q.; Guo, G. S. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 2014, 7, 2831–2867.

2

Tušar, N. N.; Maučec, D.; Rangus, M.; Arčon, I.; Mazaj, M.; Cotman, M.; Pintar, A.; Kaučič, V. Manganese functionalized silicate nanoparticles as a Fenton-type catalyst for water purification by advanced oxidation processes (AOP). Adv. Funct. Mater. 2012, 22, 820–826.

3

Mishra, M.; Chun, D. M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A: Gen. 2015, 498, 126–141.

4

Fujihira, M.; Satoh, Y.; Osa, T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 1981, 293, 206–208.

5

Anwer, H.; Mahmood, A.; Lee, J.; Kim, K. H.; Park, J. W.; Yip, A. C. K. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res. 2019, 12, 955–972.

6

Xing, M. Y.; Xu, W. J.; Dong, C. C.; Bai, Y. C.; Zeng, J. B.; Zhou, Y.; Zhang, J. L.; Yin, Y. D. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 2018, 4, 1359–1372.

7

Kwan, W. P.; Voelker, B. M. Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems. Environ. Sci. Technol. 2003, 37, 1150–1158.

8

Qin, Y. X.; Song, F. H.; Ai, Z. H.; Zhang, P. P.; Zhang, L. Z. Protocatechuic acid promoted alachlor degradation in Fe(III)/H2O2 Fenton system. Environ. Sci. Technol. 2015, 49, 7948–7956.

9

Cao, X.; Chen, Z.; Lin, R.; Cheong, W. C.; Liu, S. J.; Zhang, J.; Peng, Q.; Chen, C.; Han, T.; Tong, X. J. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C-H bonds in toluene. Nat. Catal. 2018, 1, 704–710.

10

Mushtaq, F.; Chen, X. Z.; Torlakcik, H.; Nelson, B. J.; Pané, S. Enhanced catalytic degradation of organic pollutants by multi-stimuli activated multiferroic nanoarchitectures. Nano Res. 2020, 13, 2183–2191.

11

Yu, Z. J.; Chen, Z.; Chen, Y. G.; Peng, Q.; Lin, R.; Wang, Y.; Shen, R. A.; Cao, X.; Zhuang, Z. B.; Li, Y. D. Photocatalytic hydrogenation of nitroarenes using Cu1.94S-Zn0.23Cd0.77S heteronanorods. Nano Res. 2018, 11, 3730–3738.

12

Lin, Z. Y.; Du, C.; Yan, B.; Yang, G. W. Amorphous Fe2O3 for photocatalytic hydrogen evolution. Catal. Sci. Technol. 2019, 9, 5582–5592.

13

Jana, T. K.; Pal, A.; Mandal, A. K.; Sarwar, S.; Chakrabarti, P.; Chatterjee, K. Photocatalytic and antibacterial performance of α-Fe2O3 nanostructures. ChemistrySelect 2017, 2, 3068–3077.

14

Sun, K.; Wang, L. F.; Wu, C. Z.; Deng, J. P.; Pan, K. Fabrication of α-Fe2O3@rGO/PAN nanofiber composite membrane for photocatalytic degradation of organic dyes. Adv. Mater. Interfaces 2017, 4, 1700845.

15

Rachna; Rani, M.; Shanker, U. Enhanced photocatalytic degradation of chrysene by Fe2O3@ZnHCF nanocubes. Chem. Eng. J. 2018, 348, 754–764.

16

Sadeghi-Niaraki, S.; Ghasemi, B.; Habibolahzadeh, A.; Ghasemi, E.; Ghahari, M. Cool and photocatalytic reddish-brown nanostructured Fe2O3@SiO2@TiO2 pigments. Mater. Sci. Eng. B 2020, 262, 114752.

17

Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Stöber-like method to synthesize ultralight, porous, stretchable Fe2O3/graphene aerogels for excellent performance in photo-Fenton reaction and electrochemical capacitors. J. Mater. Chem. A 2015, 3, 12820–12827.

18

Liu, B.; Tian, L. H.; Wang, R.; Yang, J. F.; Guan, R.; Chen, X. B. Pyrrolic-N-doped graphene oxide/Fe2O3 mesocrystal nanocomposite: Efficient charge transfer and enhanced photo-Fenton catalytic activity. Appl. Surf. Sci. 2017, 422, 607–615.

19

Mao, G. Y.; Bu, F. X.; Jiang, D. M.; Zhao, Z. J.; Zhang, Q. H.; Jiang, J. S. Synthesis, characterization and adsorption properties of magnetic γ-Fe2O3/C nanocomposite. J. Nanosci. Nanotechnol. 2015, 15, 5924–5932.

20

Wu, Y. Z.; Ward-Bond, J.; Li, D. L.; Zhang, S. H.; Shi, J. F.; Jiang, Z. Y. g-C3N4@α-Fe2O3/C photocatalysts: Synergistically intensified charge generation and charge transfer for NADH regeneration. ACS Catal. 2018, 8, 5664–5674.

21

Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834.

22

Xiao, X. D.; Gao, Y. T.; Zhang, L. P.; Zhang, J. C.; Zhang, Q.; Li, Q.; Bao, H. L.; Zhou, J.; Miao, S.; Chen, N. et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv. Materi. 2020, 32, 2003082.

23

Zhao, C.; Li, Q.; Xie, Y.; Zhang, L. P.; Xiao, X. D.; Wang, D.; Jiao, Y. Q.; Price, C. A. H.; Jiang, B. J.; Liu, J. Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. J. Mater. Chem. A 2020, 8, 305–312.

24

Wu, B. G.; Zhang, L. P.; Jiang, B. J.; Li, Q.; Tian, C. G.; Xie, Y.; Li, W. Z.; Fu, H. G. Inside back cover: Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation. Angew. Chem., Int. Ed. 2021, 60, 4951.

25

Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-Ion batteries. ACS Nano 2015, 9, 4026–4035.

26

Zhang, G.; Gao, Y. Y.; Zhang, Y. L.; Guo, Y. D. Fe2O3-pillared rectorite as an efficient and stable Fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environ. Sci. Technol. 2010, 44, 6384–6389.

27

Liu, S. Z.; Wang, S. B.; Jiang, Y.; Zhao, Z. Q.; Jiang, G. Y.; Sun, Z. Y. Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia. Chem. Eng. J. 2019, 373, 572–579.

28

Wu, Q. N.; Meng, D. D.; Zhang, Y.; Zhao, Q. D.; Bu, Q. J.; Wang, D. J.; Zou, X. X.; Lin, Y. H.; Li, S.; Xie, T. F. Acid-treated Ti4+ doped hematite photoanode for efficient solar water oxidation-Insight into surface states and charge separation. J. Alloys Compd. 2019, 782, 943–951.

29

Men, Y. L.; Liu, P.; Peng, X. C.; Pan, Y. X. Efficient photocatalysis triggered by thin carbon layers coating on photocatalysts: Recent progress and future perspectives. Sci. China Chem. 2020, 63, 1416–1427.

30

Cui, Y.; Pan, Y. X.; Qin, H.; Cong, H. P.; Yu, S. H. A noble-metal-free CdS/Ni3S2@C nanocomposite for efficient visible-light-driven photocatalysis. Small Methods 2018, 2, 1800029.

31

Zhang, J.; Ji, Y. J.; Wang, P. T.; Shao, Q.; Li, Y. Y.; Huang, X. Q. Adsorbing and activating N2 on heterogeneous Au-Fe3O4 nanoparticles for N2 fixation. Adv. Funct. Mater. 2020, 30, 1906579.

32

Hassan, M. F.; Rahman, M. M.; Guo, Z. P.; Chen, Z. X.; Liu, H. K. Solvent-assisted molten salt process: A new route to synthesise α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries. Electrochim. Acta 2010, 55, 5006–5013.

33

Guo, C. F.; Hu, Y.; Qian, H. S.; Ning, J. Q.; Xu, S. J. Magnetite (Fe3O4) tetrakaidecahedral microcrystals: Synthesis, characterization, and micro-Raman study. Mater. Charact. 2011, 62, 148–151.

34

Pampel, J.; Mehmood, A.; Antonietti, M.; Fellinger, T. P. Ionothermal template transformations for preparation of tubular porous nitrogen doped carbons. Mater. Horiz. 2017, 4, 493–501.

35

Zhang, X. D.; Wang, Y. X.; Hou, F. L.; Li, H. X.; Yang, Y.; Zhang, X. X.; Yang, Y. Q.; Wang, Y. Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl. Surf. Sci. 2017, 391, 476–483.

36

Zhou, P.; Ren, W.; Nie, G.; Li, X. J.; Duan, X. G.; Zhang, Y. L.; Wang, S. B. Fast and long-lasting iron(III) reduction by boron toward green and accelerated Fenton chemistry. Angew. Chem., Int. Ed. 2020, 59, 16517–16526.

37

Zhang, T.; Jiang, Z. Q.; Chen, L. B.; Pan, C. S.; Sun, S.; Liu, C.; Li, Z. H.; Ren, W. Z.; Wu, A. G.; Huang, P. T. PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. Nano Res. 2020, 13, 273–281.

38

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

39

Nozaki, T.; Pati, S. P.; Shiokawa, Y.; Suzuki, M.; Ina, T.; Mibu, K.; Al-Mahdawi, M.; Ye, S. J.; Sahashi, M. Identifying valency and occupation sites of Ir dopants in antiferromagnetic α-Fe2O3 thin films with X-ray absorption fine structure and Mössbauer spectroscopy. J. Appl. Phys. 2019, 125, 113903.

40

Yang, L.; Kruse, B. Revised Kubelka-Munk theory. I. Theory and application. J. Opt. Soc. Am. A 2004, 21, 1933–1941.

41

Zhao, C.; Zheng, M.; Wang, D.; Li, Q.; Jiang, B. J. Enhanced charge separation and transfer of Fe2O3@Nitrogen-rich carbon nitride tubes for photocatalytic water splitting. Energy Technol. 2020, 8, 2000108.

42

Tang, Y. Q.; Yuan, M.; Jiang, B. J.; Xiao, Y. T.; Fu, Y.; Chen, S.; Deng, Z. P.; Pan, Q. J.; Tian, C. G.; Fu, H. G. Inorganic acid-derived hydrogen-bonded organic frameworks to form nitrogen-rich carbon nitrides for photocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5, 21979–21985.

43

Zhang, Z. S.; Gao, Y.; Li, P.; Qu, B. H.; Mu, Z. Y.; Liu, Y.; Qu, Y.; Kong, D. G.; Chang, Q.; Jing, L. Q. Highly sensitive fluorescence detection of chloride ion in aqueous solution with Ag-modified porous g-C3N4 nanosheets. Chin. Chem. Lett. 2020, 31, 2725–2729.

44

Jiang, J. J.; Gao, J. Y.; Li, T. R.; Chen, Y. F.; Wu, Q. N.; Xie, T. F.; Lin, Y. H.; Dong, S. S. Visible-light-driven photo-Fenton reaction with α-Fe2O3/BiOI at near neutral pH: Boosted photogenerated charge separation, optimum operating parameters and mechanism insight. J. Colloid. Interface Sci. 2019, 554, 531–543.

45

Bu, Q. J.; Li, S.; Zhang, K.; Lin, Y. H.; Wang, D. J.; Zou, X. X.; Xie, T. F. Hole transfer channel of ferrihydrite designed between Ti-Fe2O3 and CoPi as an efficient and durable photoanode. ACS Sustainable Chem. Eng. 2019, 7, 10971–10978.

46

Tamura, H.; Goto, K.; Yotsuyanagi, T.; Nagayama, M. Spectrophotometric determination of iron(II) with 1, 10-phenanthroline in the presence of large amounts of iron(III). Talanta 1974, 21, 314–318.

47

Wang, Y. X.; Sun, H. Q.; Ang, H. M.; Tadé, M. O.; Wang, S. B. 3D-hierarchically structured MnO2 for catalytic oxidation of phenol solutions by activation of peroxymonosulfate: Structure dependence and mechanism. Appl. Catal. B:Environ. 2015, 164, 159–167.

48

Chen, J. X.; Lei, S.; Zeng, K.; Wang, M. Z.; Asif, A.; Ge, X. W. Catalase-imprinted Fe3O4/Fe@fibrous SiO2/polydopamine nanoparticles: An integrated nanoplatform of magnetic targeting, magnetic resonance imaging, and dual-mode cancer therapy. Nano Res. 2017, 10, 2351–2363.

49

Dong, C. C.; Ji, J. H.; Shen, B.; Xing, M. Y.; Zhang, J. L. Enhancement of H2O2 decomposition by the co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol. Environ. Sci. Technol. 2018, 52, 11297–11308.

50

Feng, G. D.; Cheng, P.; Yan, W. F.; Boronat, M.; Li, X.; Su, J. H.; Wang, J. Y.; Li, Y.; Corma, A.; Xu, R. R. et al. Accelerated crystallization of zeolites via hydroxyl free radicals. Science 2016, 351, 1188–1191.

51

Yang, F.; Chu, X. Y.; Sun, J. H.; Zhang, Y. H.; Li, Z. J.; Liu, H. Y.; Bai, L. L.; Qu, Y.; Jing, L. Q. Efficient singlet oxygen generation by excitonic energy transfer on ultrathin g-C3N4 for selective photocatalytic oxidation of methyl-phenyl-sulfide with O2. Chin. Chem. Lett. 2020, 31, 2784–2788.

52

Xing, M. Y.; Zhang, J. L.; Qiu, B. C.; Tian, B. Z.; Anpo, M.; Che, M. A brown mesoporous TiO2-x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 2015, 11, 1920–1929.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 July 2021
Revised: 18 August 2021
Accepted: 19 August 2021
Published: 01 October 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFE0201704), the National Natural Science Foundation of China (No. 21771061), and the Outstanding Youth Fund of Heilongjiang Province (No. JQ 2020B002).

Return