Journal Home > Volume 15 , Issue 3

Cobalt oxide (Co3O4) is currently suitable in energy storage applications because of its high capacity based on the conversion reaction mechanism. However, unmodified Co3O4 suffers from distinctly inferior rate capability and poor cycling stability. On the basis of the aforementioned considerations and density functional theory (DFT) simulations, the three-dimensional hierarchical porous structure (HPS) ultrasmall Co3O4 anchored into ionic liquid (IL) modified graphene oxide (GO) has been successfully prepared (ultrasmall/Co3O4-GA-IL). The ultrasmall/Co3O4-GA-IL consists of Co3O4 co-assembled with IL modified GO to generate the HPS which can facilitate ion transfer channels through reduction of the electron and ion transportation path and transmission impedance. In addition, N-doping graphene can enhance the inherent electrical conductivity of Co3O4, which is proved by the DFT calculations. By virtue of the novel superstructure, the ultrasmall/Co3O4-GA-IL electrode demonstrates a high reversible capacity of 1,304 mAh·g−1, an enhanced high-rate capability (715 mAh·g−1 at 5 C), and a capacity retention of 98.4% even after 500 cycles at 5 C rate, which corresponds to 0.0003% capacity loss per cycle. Pouch cells based on the cathode are further fabricated and demonstrate excellent mechanical and electrochemical properties under bent and folded state, highlighting the practical application of our deliberately designed electrode in wearable electronics.


menu
Abstract
Full text
Outline
About this article

Structure-design and theoretical-calculation for ultrasmall Co3O4 anchored into ionic liquid modified graphene as anode of flexible lithium-ion batteries

Show Author's information Longda Cong1Shichao Zhang1( )Hengyao Zhu1Weixin Chen3Xueyan Huang4Yalan Xing1Jun Xia1( )Puheng Yang1,2( )Xia Lu3
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
School of Physics Science and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
School of Materials, Sun Yat-sen University, Shenzhen 518107, China
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Cobalt oxide (Co3O4) is currently suitable in energy storage applications because of its high capacity based on the conversion reaction mechanism. However, unmodified Co3O4 suffers from distinctly inferior rate capability and poor cycling stability. On the basis of the aforementioned considerations and density functional theory (DFT) simulations, the three-dimensional hierarchical porous structure (HPS) ultrasmall Co3O4 anchored into ionic liquid (IL) modified graphene oxide (GO) has been successfully prepared (ultrasmall/Co3O4-GA-IL). The ultrasmall/Co3O4-GA-IL consists of Co3O4 co-assembled with IL modified GO to generate the HPS which can facilitate ion transfer channels through reduction of the electron and ion transportation path and transmission impedance. In addition, N-doping graphene can enhance the inherent electrical conductivity of Co3O4, which is proved by the DFT calculations. By virtue of the novel superstructure, the ultrasmall/Co3O4-GA-IL electrode demonstrates a high reversible capacity of 1,304 mAh·g−1, an enhanced high-rate capability (715 mAh·g−1 at 5 C), and a capacity retention of 98.4% even after 500 cycles at 5 C rate, which corresponds to 0.0003% capacity loss per cycle. Pouch cells based on the cathode are further fabricated and demonstrate excellent mechanical and electrochemical properties under bent and folded state, highlighting the practical application of our deliberately designed electrode in wearable electronics.

Keywords: ionic liquid, hierarchical porous structure, co-assembly, ultrasmall cobalt oxide, flexible lithium-ion batteries, density functional theory simulations

References(35)

1

Wu, Y. Z.; Meng, J. S.; Li, Q.; Niu, C. J.; Wang, X. P.; Yang, W.; Li, W.; Mai, L. Q. Interface-modulated fabrication of hierarchical yolk-shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Res. 2017, 10, 2364–2376.

2

Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.

3

Kim, W. S.; Hwa, Y.; Kim, H. C.; Choi, J. H.; Sohn, H. J.; Hong, S. H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.

4

Oh, M. H.; Yu, T.; Yu, S. H.; Lim, B.; Ko, K. T.; Willinger, M. G.; Seo, D. H.; Kim, B. H.; Cho, M. G.; Park, J. H. et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 2013, 340, 964–968.

5

Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794–803.

6

Sun, H. T.; Xin, G. Q.; Hu, T.; Yu, M. P.; Shao, D. L.; Sun, X.; Lian, J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 2014, 5, 4526.

7

Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 2013, 6, 167–173.

8

Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren, W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815–3826.

9

Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428–1436.

10

Chen, J. S.; Zhu, T.; Hu, Q. H.; Gao, J. J.; Su, F. B.; Qiao, S. Z.; Lou, X. W. Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. ACS Appl. Mater. Interfaces 2010, 2, 3628–3635.

11

Keng, P. Y.; Kim, B. Y.; Shim, I. B.; Sahoo, R.; Veneman, P. E.; Armstrong, N. R.; Yoo, H.; Pemberton, J. E.; Bull, M. M.; Griebel, J. J. et al. Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires. ACS Nano 2009, 3, 3143–3157.

12

Wang, T. L.; Zhao, G.; Sun, C. L.; Zhang, L.; Wu, Y. Z.; Hao, X. P.; Shao, Y. L. Graphene-assisted exfoliation of molybdenum disulfide to fabricate 2D heterostructure for enhancing lithium storage. Adv. Mater. Interfaces 2017, 4, 1601187.

13

Wang, J. Y.; Yang, N. L.; Tang, H. J.; Dong, Z. H.; Jin, Q.; Yang, M.; Kisailus, D.; Zhao, H. J.; Tang, Z. Y.; Wang, D. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 6417–6420.

14

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

15

Dou, Y. H.; Xu, J. T.; Ruan, B. Y.; Liu, Q. N.; Pan, Y. D.; Sun, Z. Q.; Dou, S. X. Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1501835.

16

Chen, Y. M.; Yu, L.; Lou, X. W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew. Chem., Int. Ed. 2016, 55, 5990–5993.

17

Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv. Mater. 2019, 31, 1803639.

18

Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 12594–12599.

19

Mao, J. J.; Iocozzia, J.; Huang, J. Y.; Meng, K.; Lai, Y. K.; Lin, Z. Q. Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 2018, 11, 772–799.

20

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

21

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

22

Teng, Y. Q.; Zhao, H. L.; Zhang, Z. J.; Li, Z. L.; Xia, Q.; Zhang, Y.; Zhao, L. N.; Du, X. F.; Du, Z. H.; Lv, P. P. et al. MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 2016, 10, 8526–8535.

23

Petkovic, M.; Seddon, K. R.; Rebelo, L. P. N.; Pereira, C. S. Ionic liquids: A pathway to environmental acceptability. Chem. Soc. Rev. 2011, 40, 1383–1403.

24

Ma, L.; Ye, J. B.; Chen, W. X.; Wang, J. M.; Liu, R.; Lee, J. Y. Synthesis of few-layer MoS2-graphene composites with superior electrochemical lithium-storage performance by an ionic-liquid-mediated hydrothermal route. ChemElectroChem 2015, 2, 538–546.

25

Xu, M.; Xia, Q. Y.; Yue, J. L.; Zhu, X. H.; Guo, Q. B.; Zhu, J. W.; Xia, H. Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries. Adv. Funct. Mater. 2019, 29, 1807377.

26

Hsieh, C. T.; Lin, J. S.; Chen, Y. F.; Teng, H. S. Pulse microwave deposition of cobalt oxide nanoparticles on graphene nanosheets as anode materials for lithium ion batteries. J. Phys. Chem. C 2012, 116, 15251–15258.

27

Yang, Y.; Huang, J. X.; Zeng, J.; Xiong, J.; Zhao, J. B. Direct electrophoretic deposition of binder-free Co3O4/graphene sandwich-like hybrid electrode as remarkable lithium ion battery anode. ACS Appl. Mater. Interfaces 2017, 9, 32801–32811.

28

Yin, D. M.; Huang, G.; Sun, Q. J.; Li, Q.; Wang, X. X.; Yuan, D. X.; Wang, C. L.; Wang, L. M. RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim. Acta 2016, 215, 410–419.

29

Kaneti, Y. V.; Zhang, J.; He, Y. B.; Wang, Z. J.; Tanaka, S.; Hossain, S. A.; Pan, Z. Z.; Xiang, B.; Yang, Q. H.; Yamauchi, Y. Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 15356–15366.

30

Xia, J.; Li, R. X.; Wang, T. S.; Yang, P. H.; Zhou, H. L.; Li, J. J.; Xiong, G. Y.; Xing, Y. L.; Zhang, S. C. Structure-designed synthesis of 3D MoS2 anchored on ionic liquid modified rGO-CNTs inspired by a honeycomb for excellent lithium storage. J. Mater. Chem. A 2020, 8, 4868–4876.

31

Jiang, D. E.; Dai, S. The role of low-coordinate oxygen on Co3O4 (110) in catalytic CO oxidation. Phys. Chem. Chem. Phys. 2011, 13, 978–984.

32

Xu, X. L.; Chen, Z. H.; Li, Y.; Chen, W. K.; Li, J. Q. Bulk and surface properties of spinel Co3O4 by density functional calculations. Surf. Sci. 2009, 603, 653–658.

33

Odedairo, T.; Yan, X. C.; Ma, J.; Jiao, Y. L.; Yao, X. D.; Du, A. J.; Zhu, Z. H. Nanosheets Co3O4 interleaved with graphene for highly efficient oxygen reduction. ACS Appl. Mater. Interfaces 2015, 7, 21373–21380.

34

Du, W. Y.; Zhang, Q. Z.; Shang, Y. N.; Wang, W.; Li, Q.; Yue, Q. Y.; Gao, B. Y.; Xu, X. Sulfate saturated biosorbent-derived Co-S@NC nanoarchitecture as an efficient catalyst for peroxymonosulfate activation. Appl. Catal. B:Environ. 2020, 262, 118302.

35

Meng, T.; Li, B.; Wang, Q. S.; Hao, J. N.; Huang, B. B.; Gu, F. L.; Xu, H. M.; Liu, P.; Tong, Y. X. Large-scale electric-field confined silicon with optimized charge-transfer kinetics and structural stability for high-rate lithium-ion batteries. ACS Nano 2020, 14, 7066–7076.

Publication history
Copyright
Acknowledgements

Publication history

Received: 29 June 2021
Revised: 10 August 2021
Accepted: 23 August 2021
Published: 27 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by National Key Research and Development Program of China (No. 2019YFA0705700), the National Natural Science Foundation of China (Nos. 51774017 and 51904016) and Key Program of Equipment Pre-Research Foundation of China (No. 6140721020103). The Raman characterization studies were supported by Beijing Zhongkebaice Technology Service Co., Ltd. The XPS analysis studies were supported by Shiyanjia Lab (www.shiyanjia.com).

Return