Journal Home > Volume 15 , Issue 3

Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1–100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.


menu
Abstract
Full text
Outline
About this article

Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform

Show Author's information Nawamin Sa-nguanmoo1,2Katawut Namdee3Mattaka Khongkow3Uracha Ruktanonchai3YongXiang Zhao4Xing-Jie Liang1,2( )
CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning 530021, China

Abstract

Vaccination is the most effective way to prevent coronavirus disease 2019 (COVID-19). Vaccine development approaches consist of viral vector vaccines, DNA vaccine, RNA vaccine, live attenuated virus, and recombinant proteins, which elicit a specific immune response. The use of nanoparticles displaying antigen is one of the alternative approaches to conventional vaccines. This is due to the fact that nano-based vaccines are stable, able to target, form images, and offer an opportunity to enhance the immune responses. The diameters of ultrafine nanoparticles are in the range of 1–100 nm. The application of nanotechnology on vaccine design provides precise fabrication of nanomaterials with desirable properties and ability to eliminate undesirable features. To be successful, nanomaterials must be uptaken into the cell, especially into the target and able to modulate cellular functions at the subcellular levels. The advantages of nano-based vaccines are the ability to protect a cargo such as RNA, DNA, protein, or synthesis substance and have enhanced stability in a broad range of pH, ambient temperatures, and humidity for long-term storage. Moreover, nano-based vaccines can be engineered to overcome biological barriers such as nonspecific distribution in order to elicit functions in antigen presenting cells. In this review, we will summarize on the developing COVID-19 vaccine strategies and how the nanotechnology can enhance antigen presentation and strong immunogenicity using advanced technology in nanocarrier to deliver antigens. The discussion about their safe, effective, and affordable vaccines to immunize against COVID-19 will be highlighted.

Keywords: COVID-19, vaccine, nanotechnology, SARS-CoV-2, antigen presenting cells (APCs)

References(447)

1

Zhang, L.; Wang, W.; Wang, S. X. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev. Vaccines 2015, 14, 1509–1523.

2
World Health Organization. Temperature sensitivity of vaccines. Geneva: World Health Organization, 2006.
3

Lemiale, F.; Kong, W. P.; Akyürek, L. M.; Ling, X.; Huang, Y.; Chakrabarti, B. K.; Eckhaus, M.; Nabel, G. J. Enhanced mucosal immunoglobulin a response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J. Virol. 2003, 77, 10078–10087.

4

Bregu, M.; Draper, S. J.; Hill, A. V. S.; Greenwood, B. M. Accelerating vaccine development and deployment: Report of a royal society satellite meeting. Philos. Trans. Roy. Soc. Lond B Biol. Sci. 2011, 366, 2841–2849.

5

Deming, M. E.; Michael, N. L.; Robb, M.; Cohen, M. S.; Neuzil, K. M. Accelerating development of SARS-CoV-2 vaccines-the role for controlled human infection models. N. Engl. J. Med. 2020, 383, e63.

6

Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527.

7

Nguyen, L. C.; Bakerlee, C. W.; McKelvey, T. G.; Rose, S. M.; Norman, A. J.; Joseph, N.; Manheim, D.; McLaren, M. R.; Jiang, S.; Barnes, C. F. et al. Evaluating use cases for human challenge trials in accelerating SARS-CoV-2 vaccine development. Clin. Infect. Dis. 2021, 72, 710–715.

8

Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.

9

Tang, X. L.; Wu, C. C.; Li, X.; Song, Y. H.; Yao, X. M.; Wu, X. K.; Duan, Y. G.; Zhang, H.; Wang, Y. R.; Qian, Z. H. et al. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 2020, 7, 1012–1023.

10

Wu, F.; Zhao, S.; Yu, B.; Chen, Y. M.; Wang, W.; Song, Z. G.; Hu, Y.; Tao, Z. W.; Tian, J. H.; Pei, Y. Y. et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269.

11

Belouzard, S.; Millet, J. K.; Licitra, B. N.; Whittaker, G. R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012, 4, 1011–1033.

12

Andersen, K. G.; Rambaut, A.; Lipkin, W. I.; Holmes, E. C.; Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452.

13

Konno, Y.; Kimura, I.; Uriu, K.; Fukushi, M.; Irie, T.; Koyanagi, Y.; Sauter, D.; Gifford, R. J.; USFQ-COVID19 Consortium; Nakagawa, S. et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant. Cell Rep. 2020, 32, 108185.

14

Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724.

15

Ivashkiv, L. B.; Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49.

16

Park, A.; Iwasaki, A. Type I and type III interferons-induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 2020, 27, 870–878.

17

Chan, J. F.; Kok, K. H.; Zhu, Z.; Chu, H.; To, K. K. W.; Yuan, S. F.; Yuen, K. Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020, 9, 221–236.

18

Muth, D.; Corman, V. M.; Roth, H.; Binger, T.; Dijkman, R.; Gottula, L. T.; Gloza-Rausch, F.; Balboni, A.; Battilani, M.; Rihtarič, D. et al. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci. Rep. 2018, 8, 15177.

19

Su, Y. C. F.; Anderson, D. E.; Young, B. E.; Linster, M.; Zhu, F.; Jayakumar, J.; Zhuang, Y.; Kalimuddin, S.; Low, J. G. H.; Tan, C. W. et al. Discovery and Genomic Characterization of a 382-Nucleotide Deletion in ORF7b and ORF8 during the Early Evolution of SARS-CoV-2. mBio 2020, 11, e01610–e01620.

20

Young, B. E.; Fong, S. W.; Chan, Y. H.; Mak, T. M.; Ang, L. W.; Anderson, D. E.; Lee, C. Y. P.; Amrun, S. N.; Lee, B.; Goh, Y. S. et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: An observational cohort study. Lancet 2020, 396, 603–611.

21

Kim, D.; Lee, J. Y.; Yang, J. S.; Kim, J. W.; Kim, V. N.; Chang, H. The architecture of SARS-CoV-2 transcriptome. Cell 2020, 181, 914–921.e10.

22

Bojkova, D.; Klann, K.; Koch, B.; Widera, M.; Krause, D.; Ciesek, S.; Cinatl, J.; Münch, C. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 2020, 583, 469–472.

23

Davidson, A. D.; Williamson, M. K.; Lewis, S.; Shoemark, D.; Carroll, M. W.; Heesom, K. J.; Zambon, M.; Ellis, J.; Lewis, P. A.; Hiscox, J. A. et al. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 2020, 12, 68.

24

Li, M. Y.; Li, L.; Zhang, Y.; Wang, X. S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 2020, 9, 45.

25

Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 2020, 78, 779–784.e5.

26

Sawicki, S. G.; Sawicki, D. L.; Siddell, S. G. A contemporary view of coronavirus transcription. J. Virol. 2007, 81, 20–29.

27

Snijder, E. J.; van der Meer, Y.; Zevenhoven-Dobbe, J.; Onderwater, J. J. M.; van der Meulen, J.; Koerten, H. K.; Mommaas, A. M. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol. 2006, 80, 5927–5940.

28

de Haan, C. A. M.; Rottier, P. J. M. Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 2005, 64, 165–230.

29

Raamsman, M. J. B.; Locker, J. K.; de Hooge, A.; de Vries, A. A. F.; Griffiths, G.; Vennema, H.; Rottier, P. J. M. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J. Virol. 2000, 74, 2333–2342.

30

Wu, C. R.; Zheng, M. Z.; Yang, Y. Y.; Gu, X. X.; Yang, K. Y.; Li, M. X.; Liu, Y.; Zhang, Q. Z.; Zhang, P.; Wang, Y. L. et al. Furin: A potential therapeutic target for COVID-19. iScience 2020, 23, 101642.

31

Daly, J. L.; Simonetti, B.; Klein, K.; Chen, K. E.; Williamson, M. K.; Antón-Plágaro, C.; Shoemark, D. K.; Simón-Gracia, L.; Bauer, M.; Hollandi, R. et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 2020, 370, 861–865.

32

Teesalu, T.; Sugahara, K. N.; Kotamraju, V. R.; Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA 2009, 106, 16157–16162.

33

Guo, H. F.; Vander Kooi, C. W. Neuropilin functions as an essential cell surface receptor. J. Biol. Chem. 2015, 290, 29120–29126.

34

Parker, M. W.; Guo, H. F.; Li, X. B.; Linkugel, A. D.; Vander Kooi, C. W. Function of members of the neuropilin family as essential pleiotropic cell surface receptors. Biochemistry 2012, 51, 9437–9446.

35

De Winter, F.; Holtmaat, A. J. G. D.; Verhaagen, J. Neuropilin and class 3 semaphorins in nervous system regeneration. Adv. Exp. Med. Biol. 2002, 515, 115–139.

36

Roy, S.; Bag, A. K.; Singh, R. K.; Talmadge, J. E.; Batra, S. K.; Datta, K. Multifaceted role of neuropilins in the immune system: Potential targets for immunotherapy. Front. Immunol. 2017, 8, 1228.

37

Kielian, M. Enhancing host cell infection by SARS-CoV-2. Science 2020, 370, 765–766.

38

Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L. D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020, 370, 856–860.

39

Cheng, Y. W.; Chao, T. L.; Li, C. L.; Chiu, M. F.; Kao, H. C.; Wang, S. H.; Pang, Y. H.; Lin, C. H.; Tsai, Y. M.; Lee, W. H. et al. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Rep. 2020, 33, 108254.

40

Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N. H.; Nitsche, A. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280.e8.

41

Heinrich, M. A.; Martina, B.; Prakash, J. Nanomedicine strategies to target coronavirus. Nano Today 2020, 35, 100961.

42

Xia, S.; Liu, M. Q.; Wang, C.; Xu, W.; Lan, Q. S.; Feng, S. L.; Qi, F. F.; Bao, L. L.; Du, L. Y.; Liu, S. W. et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020, 30, 343–355.

43

Chan, J. F. W.; Yuan, S. F.; Kok, K. H.; To, K. K. W.; Chu, H.; Yang, J.; Xing, F. F.; Liu, J. L.; Yip, C. C. Y.; Poon, R. W. S. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523.

44

Fennelly, K. P. Particle sizes of infectious aerosols: Implications for infection control. Lancet Respir. Med. 2020, 8, 914–924.

45

Lednicky, J. A.; Lauzardo, M.; Fan, Z. H.; Jutla, A.; Tilly, T. B.; Gangwar, M.; Usmani, M.; Shankar, S. N.; Mohamed, K.; Eiguren-Fernandez, A. et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 2020, 100, 476–482.

46

Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M. G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne transmission route of COVID-19: Why 2 meters/6 feet of inter-personal distance could not be enough. Int. J. Environ. Res. Public Health 2020, 17, 2932.

47

Fiegel, J.; Clarke, R.; Edwards, D. A. Airborne infectious disease and the suppression of pulmonary bioaerosols. Drug Discov. Today 2006, 11, 51–57.

48

Thomas, R. J. Particle size and pathogenicity in the respiratory tract. Virulence 2013, 4, 847–858.

49

van Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.; Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567.

50

Aboubakr, H. A.; Sharafeldin, T. A.; Goyal, S. M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound. Emerg. Dis. 2021, 68, 296–312.

51

Chia, P. Y.; Coleman, K. K.; Tan, Y. K.; Ong, S. W. X.; Gum, M.; Lau, S. K.; Lim, X. F.; Lim, A. S.; Sutjipto, S.; Lee, P. H. et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 2020, 11, 2800.

52

Santarpia, J. L.; Rivera, D. N.; Herrera, V. L.; Morwitzer, M. J.; Creager, H. M.; Santarpia, G. W.; Crown, K. K.; Brett-Major, D. M.; Schnaubelt, E. R.; Broadhurst, M. J. et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 2020, 10, 12732.

53

Buonanno, M.; Welch, D.; Shuryak, I.; Brenner, D. J. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep. 2020, 10, 10285.

54

Pastorino, B.; Touret, F.; Gilles, M.; de Lamballerie, X.; Charrel, R. N. Heat inactivation of different types of SARS-CoV-2 samples: What protocols for biosafety, molecular detection and serological diagnostics? Viruses 2020, 12, 735.

55

Anderson, D. E.; Sivalingam, V.; Kang, A. E. Z.; Ananthanarayanan, A.; Arumugam, H.; Jenkins, T. M.; Hadjiat, Y.; Eggers, M. Povidone-iodine demonstrates rapid in vitro virucidal activity against SARS-CoV-2, the virus causing COVID-19 disease. Infect. Dis. Ther. 2020, 9, 669–675.

56

Kampf, G. Potential role of inanimate surfaces for the spread of coronaviruses and their inactivation with disinfectant agents. Infect. Prev. Pract. 2020, 2, 100044.

57

Huang, C. L.; Wang, Y. M.; Li, X. W.; Ren, L. L.; Zhao, J. P.; Hu, Y.; Zhang, L.; Fan, G. H.; Xu, J. Y.; Gu, X. Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506.

58

Qiu, H. Y.; Wu, J. H.; Hong, L.; Luo, Y. L.; Song, Q. F.; Chen, D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: An observational cohort study. Lancet Infect. Dis. 2020, 20, 689–696.

59

Du, R. H.; Liang, L. R.; Yang, C. Q.; Wang, W.; Cao, T. Z.; Li, M.; Guo, G. Y.; Du, J.; Zheng, C. L.; Zhu, Q. et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study. Eur. Respir. J. 2020, 55, 2000524.

60

Agyeman, A. A.; Chin, K. L.; Landersdorfer, C. B.; Liew, D.; Ofori-Asenso, R. Smell and taste dysfunction in patients with COVID-19: A systematic review and meta-analysis. Mayo Clin. Proc. 2020, 95, 1621–1631.

61

Klopfenstein, T.; Kadiane-Oussou, N. J.; Toko, L.; Royer, P. Y.; Lepiller, Q.; Gendrin, V.; Zayet, S. Features of anosmia in COVID-19. Med. Mal. Infect. 2020, 50, 436–439.

62

Vaira, L. A.; Salzano, G.; Deiana, G.; De Riu, G. Anosmia and ageusia: Common findings in COVID-19 patients. Laryngoscope 2020, 130, 1787.

63

Al-Zaidi, H. M. H.; Badr, H. M. Incidence and recovery of smell and taste dysfunction in COVID-19 positive patients. Egypt. J. Otolaryngol. 2020, 36, 47.

64

Lechien, J. R.; Chiesa-Estomba, C. M.; De Siati, D. R.; Horoi, M.; Le Bon, S. D.; Rodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Oto-Rhino-Laryngol. 2020, 277, 2251–2261.

65

Guan, W. J.; Ni, Z. Y.; Hu, Y.; Liang, W. H.; Ou, C. Q.; He, J. X.; Liu, L.; Shan, H.; Lei, C. L.; Hui, D. S. C. et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720.

66

Pung, R.; Chiew, C. J.; Young, B. E.; Chin, S.; Chen, M. I. C.; Clapham, H. E.; Cook, A. R.; Maurer-Stroh, S.; Toh, M. P. H. S.; Poh, C. et al. Investigation of three clusters of COVID-19 in Singapore: Implications for surveillance and response measures. Lancet 2020, 395, 1039–1046.

67

Yan, Y.; Chang, L.; Wang, L. N. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures. Rev. Med. Virol. 2020, 30, e2106.

68

Zhou, H.; Chen, X.; Hu, T.; Li, J.; Song, H.; Liu, Y. R.; Wang, P. H.; Liu, D.; Yang, J.; Holmes, E. C. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 2020, 30, 2196–2206.e3.

69

Zhao, J. J.; Yuan, Q.; Wang, H. Y.; Liu, W.; Liao, X. J.; Su, Y. Y.; Wang, X.; Yuan, J.; Li, T. D.; Li, J. X. et al. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin. Infect. Dis. 2020, 71, 2027–2034.

70

Li, Z. T.; Yi, Y. X.; Luo, X. M.; Xiong, N.; Liu, Y.; Li, S. Q.; Sun, R. L.; Wang, Y. Q.; Hu, B. C.; Chen, W. et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020, 92, 1518–1524.

71

Xiao, A. T.; Gao, C.; Zhang, S. Profile of specific antibodies to SARS-CoV-2: The first report. J. Infect. 2020, 81, 147–178.

72

Yu, H. Q.; Sun, B. Q.; Fang, Z. F.; Zhao, J. C.; Liu, X. Y.; Li, Y. M.; Sun, X. Z.; Liang, H. F.; Zhong, B.; Huang, Z. F. et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur. Respir. J. 2020, 56, 2001526.

73

Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273.

74

Katze, M. G.; He, Y. P.; Gale, M. Jr. Viruses and interferon: A fight for supremacy. Nat. Rev. Immunol. 2002, 2, 675–687.

75
Payne, S. Immunity and resistance to viruses. In Viruses: From Understanding to Investigation. Payne, S., Ed.; Academic Press: London, 2017; pp 61–71.https://doi.org/10.1016/B978-0-12-803109-4.00006-4
DOI
76

Stanifer, M. L.; Kee, C.; Cortese, M.; Zumaran, C. M.; Triana, S.; Mukenhirn, M.; Kraeusslich, H. G.; Alexandrov, T.; Bartenschlager, R.; Boulant, S. Critical role of type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells. Cell Rep. 2020, 32, 107863.

77

Broggi, A.; Ghosh, S.; Sposito, B.; Spreafico, R.; Balzarini, F.; Lo Cascio, A.; Clementi, N.; De Santis, M.; Mancini, N.; Granucci, F. et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science 2020, 369, 706–712.

78

Blanco-Melo, D.; Nilsson-Payant, B. E.; Liu, W. C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T. X.; Oishi, K.; Panis, M.; Sachs, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020, 181, 1036–1045.e9.

79

Pedersen, S. F.; Ho, Y. C. SARS-CoV-2: A storm is raging. J. Clin. Invest. 2020, 130, 2202–2205.

80

Mantlo, E.; Bukreyeva, N.; Maruyama, J.; Paessler, S.; Huang, C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020, 179, 104811.

81
Wherry, E. J.; Masopust, D. Adaptive immunity: Neutralizing, eliminating, and remembering for the next time. In Viral Pathogenesis: From Basics to Systems Biology. Katze, M. G.; Korth, M. J.; Law, G. L.; Nathanson, N., Eds.; Academic Press: Boston, 2016; pp 57–69.https://doi.org/10.1016/B978-0-12-800964-2.00005-7
DOI
82

Weiskopf, D.; Schmitz, K. S.; Raadsen, M. P.; Grifoni, A.; Okba, N. M. A.; Endeman, H.; van den Akker, J. P. C.; Molenkamp, R.; Koopmans, M. P. G.; van Gorp, E. C. M. et al. Phenotype and kinetics of SARS-CoV-2–specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol. 2020, 5, eabd2071.

83

Grifoni, A.; Weiskopf, D.; Ramirez, S. I.; Mateus, J.; Dan, J. M.; Moderbacher, C. R.; Rawlings, S. A.; Sutherland, A.; Premkumar, L.; Jadi, R. S. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020, 181, 1489–1501,e15.

84

Chu, D. K. W.; Pan, Y.; Cheng, S. M. S.; Hui, K. P. Y.; Krishnan, P.; Liu, Y. Z.; Ng, D. Y. M.; Wan, C. K. C.; Yang, P.; Wang, Q. Y. et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin. Chem. 2020, 66, 549–555.

85

Wang, D. W.; Hu, B.; Hu, C.; Zhu, F. F.; Liu, X.; Zhang, J.; Wang, B. B.; Xiang, H.; Cheng, Z. S.; Xiong, Y. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069.

86

Yan, C.; Cui, J.; Huang, L.; Du, B.; Chen, L.; Xue, G.; Li, S.; Zhang, W.; Zhao, L.; Sun, Y. et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin. Microbiol. Infect. 2020, 26, 773–779.

87

Patchsung, M.; Jantarug, K.; Pattama, A.; Aphicho, K.; Suraritdechachai, S.; Meesawat, P.; Sappakhaw, K.; Leelahakorn, N.; Ruenkam, T.; Wongsatit, T. et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat. Biomed. Eng. 2020, 4, 1140–1149.

88

Kim, C.; Ahmed, J. A.; Eidex, R. B.; Nyoka, R.; Waiboci, L. W.; Erdman, D.; Tepo, A.; Mahamud, A. S.; Kabura, W.; Nguhi, M. et al. Comparison of nasopharyngeal and oropharyngeal swabs for the diagnosis of eight respiratory viruses by real-time reverse transcription-PCR assays. PLoS One 2011, 6, e21610.

89

Vashist, S. K. In vitro diagnostic assays for COVID-19: Recent advances and emerging trends. Diagnostics 2020, 10, 202.

90

Liu, W. B.; Liu, L.; Kou, G. M.; Zheng, Y. Q.; Ding, Y. J.; Ni, W. X.; Wang, Q. S.; Tan, L.; Wu, W. L.; Tang, S. et al. Evaluation of nucleocapsid and spike protein-based enzyme-linked immunosorbent assays for detecting antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020, 58, e00461–20.

91

Wölfel, R.; Corman, V. M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M. A.; Niemeyer, D.; Jones, T. C.; Vollmar, P.; Rothe, C. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469.

92

Zhang, W.; Du, R. H.; Li, B.; Zheng, X. S.; Yang, X. L.; Hu, B.; Wang, Y. Y.; Xiao, G. F.; Yan, B.; Shi, Z. L. et al. Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerg. Microbes Infect. 2020, 9, 386–389.

93

Li, Y.; Xia, L. M. Coronavirus disease 2019 (COVID-19): Role of chest CT in diagnosis and management. Am. J. Roentgenol. 2020, 214, 1280–1286.

94

Ng, M. Y.; Lee, E. Y. P.; Yang, J.; Yang, F. F.; Li, X.; Wang, H. X.; Lui, M. M. S.; Lo, C. S. Y.; Leung, B.; Khong, P. L. et al. Imaging profile of the COVID-19 infection: Radiologic findings and literature review. Radiol. Cardiothorac. Imaging 2020, 2, e200034.

95
Burrell, C. J.; Howard, C. R.; Murphy, F. A. Vaccines and vaccination. In Fenner and White's Medical Virology. Burrell, C. J.; Howard, C. R.; Murphy, F. A., Eds.; Academic Press: London, 2017; pp 155–167.https://doi.org/10.1016/B978-0-12-375156-0.00011-4
DOI
96
Zhou, Z. P.; Dang, Sci. USA 2016, 113, E6117–E6125.
DOI
97

Mueller, S.; Papamichail, D.; Coleman, J. R.; Skiena, S.; Wimmer, E. Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J. Virol. 2006, 80, 9687–9696.

98

Nogales, A.; Baker, S. F.; Ortiz-Riaño, E.; Dewhurst, S.; Topham, D. J.; Martínez-Sobrido, L. Influenza a virus attenuation by codon deoptimization of the NS gene for vaccine development. J. Virol. 2014, 88, 10525–10540.

99

Dilucca, M.; Forcelloni, S.; Georgakilas, A. G.; Giansanti, A.; Pavlopoulou, A. Codon usage and phenotypic divergences of SARS-CoV-2 genes. Viruses 2020, 12, 498.

100

Tort, F. L.; Castells, M.; Cristina, J. A comprehensive analysis of genome composition and codon usage patterns of emerging coronaviruses. Virus Res. 2020, 283, 197976.

101

Dudek, T.; Knipe, D. M. Replication-defective viruses as vaccines and vaccine vectors. Virology 2006, 344, 230–239.

102

Lau, S. Y.; Wang, P.; Mok, B. W. Y.; Zhang, A. J.; Chu, H.; Lee, A. C. Y.; Deng, S. F.; Chen, P.; Chan, K. H.; Song, W. J. et al. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg. Microbes Infect. 2020, 9, 837–842.

103

Bull, J. J.; Smithson, M. W.; Nuismer, S. L. Transmissible viral vaccines. Trends Microbiol. 2018, 26, 6–15.

104
Sanders, B.; Koldijk, M.; Schuitemaker, H. Inactivated viral vaccines. In Vaccine Analysis: Strategies, Principles, and Control. Nunnally, B. K.; Turula, V. E.; Sitrin, R. D., Eds.; Springer: Berlin, Heidelberg, 2015; pp 45–80.https://doi.org/10.1007/978-3-662-45024-6_2
DOI
105

Seo, H. S. Application of radiation technology in vaccines development. Clin. Exp. Vaccine Res. 2015, 4, 145–158.

106

He, Y. X.; Zhou, Y. S.; Siddiqui, P.; Jiang, S. B. Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem. Biophys. Res. Commun. 2004, 325, 445–452.

107

Gao, Q.; Bao, L. L.; Mao, H. Y.; Wang, L.; Xu, K. W.; Yang, M. N.; Li, Y. J.; Zhu, L.; Wang, N.; Lv, Z. et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 77–81.

108

Bouard, D.; Alazard-Dany, D.; Cosset, F. L. Viral vectors: From virology to transgene expression. Br. J. Pharmacol. 2009, 157, 153–165.

109

Pinschewer, D. D. Virally vectored vaccine delivery: Medical needs, mechanisms, advantages and challenges. Swiss Med. Wkly. 2017, 147, w14465.

110

Robert-Guroff, M. Replicating and non-replicating viral vectors for vaccine development. Curr. Opin. Biotechnol. 2007, 18, 546–556.

111

Billeter, M. A.; Naim, H. Y.; Udem, S. A. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: Applications of recombinant measles viruses. Curr. Top. Microbiol. Immunol. 2009, 329, 129–162.

112

Malczyk, A. H.; Kupke, A.; Prüfer, S.; Scheuplein, V. A.; Hutzler, S.; Kreuz, D.; Beissert, T.; Bauer, S.; Hubich-Rau, S.; Tondera, C. et al. A highly immunogenic and protective middle east respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform. J. Virol. 2015, 89, 11654–11667.

113

Escriou, N.; Callendret, B.; Lorin, V.; Combredet, C.; Marianneau, P.; Février, M.; Tangy, F. Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein. Virology 2014, 452–453, 32–41.

114

Liniger, M.; Zuniga, A.; Tamin, A.; Azzouz-Morin, T. N.; Knuchel, M.; Marty, R. R.; Wiegand, M.; Weibel, S.; Kelvin, D.; Rota, P. A. et al. Induction of neutralising antibodies and cellular immune responses against SARS coronavirus by recombinant measles viruses. Vaccine 2008, 26, 2164–2174.

115

Mura, M.; Ruffié, C.; Combredet, C.; Aliprandini, E.; Formaglio, P.; Chitnis, C. E.; Amino, R.; Tangy, F. Recombinant measles vaccine expressing malaria antigens induces long-term memory and protection in mice. npj Vaccines 2019, 4, 12.

116

Liniger, M.; Zuniga, A.; Morin, T. N.; Combardiere, B.; Marty, R.; Wiegand, M.; Ilter, O.; Knuchel, M.; Naim, H. Y. Recombinant measles viruses expressing single or multiple antigens of human immunodeficiency virus (HIV-1) induce cellular and humoral immune responses. Vaccine 2009, 27, 3299–3305.

117

Kapadia, S. U.; Rose, J. K.; Lamirande, E.; Vogel, L.; Subbarao, K.; Roberts, A. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology 2005, 340, 174–182.

118

Nicklin, S. A.; Wu, E.; Nemerow, G. R.; Baker, A. H. The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol. Ther. 2005, 12, 384–393.

119

Charman, M.; Herrmann, C.; Weitzman, M. D. Viral and cellular interactions during adenovirus DNA replication. FEBS Lett. 2019, 593, 3531–3550.

120

Fessler, S. P.; Young, C. S. H. Control of adenovirus early gene expression during the late phase of infection. J. Virol. 1998, 72, 4049–4056.

121

Persson, H.; Philipson, L. Regulation of adenovirus gene expression. Curr. Top. Microbiol. Immunol. 1982, 97, 157–203.

122

Bauer, U.; Flunker, G.; Bruss, K.; Kallwellis, K.; Liebermann, H.; Luettich, T.; Motz, M.; Seidel, W. Detection of antibodies against adenovirus protein IX, fiber, and hexon in human sera by immunoblot assay. J. Clin. Microbiol. 2005, 43, 4426–4433.

123

Hashimoto, S.; Gonzalez, G.; Harada, S.; Oosako, H.; Hanaoka, N.; Hinokuma, R.; Fujimoto, T. Recombinant type Human mastadenovirus D85 associated with epidemic keratoconjunctivitis since 2015 in Japan. J. Med. Virol. 2018, 90, 881–889.

124
Kajon, A. E.; Weinberg, J. B.; Spindler, K. R. Adenoviruses. In Reference Module in Biomedical Sciences. Elsevier: Amsterdam, 2019.https://doi.org/10.1016/B978-0-12-801238-3.00086-6
DOI
125

Bridge, E.; Ketner, G. Redundant control of adenovirus late gene expression by early region 4. J. Virol. 1989, 63, 631–638.

126

Rubinchik, S.; Woraratanadharm, J.; Schepp, J.; Dong, J. Y. Improving the transcriptional regulation of genes delivered by adenovirus vectors. Methods Mol. Med. 2003, 76, 167–199.

127

Bett, A. J.; Prevec, L.; Graham, F. L. Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 1993, 67, 5911–5921.

128

Wold, W. S. M.; Toth, K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene Ther. 2013, 13, 421–433.

129

Zhu, F. C.; Li, Y. H.; Guan, X. H.; Hou, L. H.; Wang, W. J.; Li, J. X.; Wu, S. P.; Wang, B. S.; Wang, Z.; Wang, L. et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020, 395, 1845–1854.

130

Ng, P.; Parks, R. J.; Cummings, D. T.; Evelegh, C. M.; Graham, F. L. An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method. Hum. Gene Ther. 2000, 11, 693–699.

131

Bos, R.; Rutten, L.; van der Lubbe, J. E. M.; Bakkers, M. J. G.; Hardenberg, G.; Wegmann, F.; Zuijdgeest, D.; de Wilde, A. H.; Koornneef, A.; Verwilligen, A. et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. npj Vaccines 2020, 5, 91.

132

Abbink, P.; Lemckert, A. A. C.; Ewald, B. A.; Lynch, D. M.; Denholtz, M.; Smits, S.; Holterman, L.; Damen, I.; Vogels, R.; Thorner, A. R. et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J. Virol. 2007, 81, 4654–4663.

133

Yu, J.; Tostanoski, L. H.; Mercado, N. B.; McMahan, K.; Liu, J. Y.; Jacob-Dolan, C.; Chandrashekar, A.; Atyeo, C.; Martinez, D. R.; Anioke, T. et al. Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques. Nature 2021, 596, 423–427.

134

Tostanoski, L. H.; Wegmann, F.; Martinot, A. J.; Loos, C.; McMahan, K.; Mercado, N. B.; Yu, J. Y.; Chan, C. N.; Bondoc, S.; Starke, C. E. et al. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat. Med. 2020, 26, 1694–1700.

135

Mercado, N. B.; Zahn, R.; Wegmann, F.; Loos, C.; Chandrashekar, A.; Yu, J. Y.; Liu, J. Y.; Peter, L.; McMahan, K.; Tostanoski, L. H. et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 2020, 586, 583–588.

136

Stephenson, K. E.; Le Gars, M.; Sadoff, J.; de Groot, A. M.; Heerwegh, D.; Truyers, C.; Atyeo, C.; Loos, C.; Chandrashekar, A.; McMahan, K. et al. Immunogenicity of the Ad26. COV2. S vaccine for COVID-19. JAMA 2021, 325, 1535–1544.

137

Sadoff, J.; Le Gars, M.; Shukarev, G.; Heerwegh, D.; Truyers, C.; de Groot, A. M.; Stoop, J.; Tete, S.; Van Damme, W.; Leroux-Roels, I. et al. Interim results of a phase 1–2a trial of Ad26. COV2. S Covid-19 vaccine. N. Engl. J. Med. 2021, 384, 1824–1835.

138

Alter, G.; Yu, J. Y.; Liu, J. Y.; Chandrashekar, A.; Borducchi, E. N.; Tostanoski, L. H.; McMahan, K.; Jacob-Dolan, C.; Martinez, D. R.; Chang, A. Q. et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature 2021, 596, 268–272.

139

Rux, J. J.; Kuser, P. R.; Burnett, R. M. Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution X-ray crystallographic, molecular modeling, and sequence-based methods. J. Virol. 2003, 77, 9553–9566.

140

Rogers, N. G.; Basnight, M.; Gibbs Jun, C. J.; Gajdusek, D. C. Latent viruses in chimpanzees with experimental kuru. Nature 1967, 216, 446–449.

141

Basnight, M. Jr.; Rogers, N. G.; Gibbs, C. J. Jr.; Gajdusek, D. C. Characterization of four new adenovirus serotypes isolated from chimpanzee tissue explants. Am. J. Epidemiol. 1971, 94, 166–171.

142

Davison, A. J.; Benkő, M.; Harrach, B. Genetic content and evolution of adenoviruses. J. Gen. Virol. 2003, 84, 2895–2908.

143

Roy, S.; Gao, G. P.; Clawson, D. S.; Vandenberghe, L. H.; Farina, S. F.; Wilson, J. M. Complete nucleotide sequences and genome organization of four chimpanzee adenoviruses. Virology 2004, 324, 361–372.

144

Farina, S. F.; Gao, G. P.; Xiang, Z. Q.; Rux, J. J.; Burnett, R. M.; Alvira, M. R.; Marsh, J.; Ertl, H. C. J.; Wilson, J. M. Replication-defective vector based on a chimpanzee adenovirus. J. Virol. 2001, 75, 11603–11613.

145

Wang, X.; Xing, M.; Zhang, C.; Yang, Y.; Chi, Y. D.; Tang, X. Y.; Zhang, H. B.; Xiong, S. D.; Yu, L. G.; Zhou, D. M. Neutralizing antibody responses to enterovirus and adenovirus in healthy adults in China. Emerg. Microbes Infect. 2014, 3, 1–6.

146

Chirmule, N.; Propert, K. J.; Magosin, S. A.; Qian, Y.; Qian, R.; Wilson, J. M. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999, 6, 1574–1583.

147

Xiang, Z. Q.; Li, Y.; Cun, A.; Yang, W.; Ellenberg, S.; Switzer, W. M.; Kalish, M. L.; Ertl, H. C. J. Chimpanzee adenovirus antibodies in humans, sub-Saharan Africa. Emerg. Infect. Dis. 2006, 12, 1596–1599.

148

Fitzgerald, J. C.; Gao, G. P.; Reyes-Sandoval, A.; Pavlakis, G. N.; Xiang, Z. Q.; Wlazlo, A. P.; Giles-Davis, W.; Wilson, J. M.; Ertl, H. C. J. A simian replication-defective adenoviral recombinant vaccine to HIV-1 gag. J. Immunol. 2003, 170, 1416–1422.

149

Xiang, Z. Q.; Gao, G. P.; Reyes-Sandoval, A.; Cohen, C. J.; Li, Y.; Bergelson, J. M.; Wilson, J. M.; Ertl, H. C. J. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J. Virol. 2002, 76, 2667–2675.

150

Kobinger, G. P.; Feldmann, H.; Zhi, Y.; Schumer, G.; Gao, G. P.; Feldmann, F.; Jones, S.; Wilson, J. M. Chimpanzee adenovirus vaccine protects against Zaire Ebola virus. Virology 2006, 346, 394–401.

151

Hillis, W. D.; Goodman, R. Serologic classification of chimpanzee adenoviruses by hemagglutination and hemagglutination inhibition. J. Immunol. 1969, 103, 1089–1095.

152

Dicks, M. D. J.; Spencer, A. J.; Edwards, N. J.; Wadell, G.; Bojang, K.; Gilbert, S. C.; Hill, A. V. S.; Cottingham, M. G. A novel chimpanzee adenovirus vector with low human seroprevalence: Improved systems for vector derivation and comparative immunogenicity. PLoS One 2012, 7, e40385.

153

van Doremalen, N.; Haddock, E.; Feldmann, F.; Meade-White, K.; Bushmaker, T.; Fischer, R. J.; Okumura, A.; Hanley, P. W.; Saturday, G.; Edwards, N. J. et al. A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Sci. Adv. 2020, 6, eaba8399.

154

van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J. N.; Port, J. R.; Avanzato, V. A.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M. et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 2020, 586, 578–582.

155

Ramasamy, M. N.; Minassian, A. M.; Ewer, K. J.; Flaxman, A. L.; Folegatti, P. M.; Owens, D. R.; Voysey, M.; Aley, P. K.; Angus, B.; Babbage, G. et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): A single-blind, randomised, controlled, phase 2/3 trial. Lancet 2021, 396, 1979–1993.

156

Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 2010, 125, S3–S23.

157

Pollard, A. J.; Bijker, E. M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100.

158

Ng, O. W.; Chia, A.; Tan, A. T.; Jadi, R. S.; Leong, H. N.; Bertoletti, A.; Tan, Y. J. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 2016, 34, 2008–2014.

159

Kang, S. S.; Yang, M.; Hong, Z. S.; Zhang, L. P.; Huang, Z. X.; Chen, X. X.; He, S. H.; Zhou, Z. L.; Zhou, Z. C.; Chen, Q. Y. et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B 2020, 10, 1228–1238.

160

Dutta, N. K.; Mazumdar, K.; Gordy, J. T. The nucleocapsid protein of SARS-CoV-2: A target for vaccine development. J. Virol. 2020, 94, e00647–20.

161
Aktas, E. Bioinformatics analysis unveils certain mutations implicated in spike structure damage and ligand-binding site of severe acute respiratory syndrome coronavirus 2. Bioinform. Biol. Insights 2021, DOI: 10.1177/11779322211018200.https://doi.org/10.1177/11779322211018200
DOI
162

Chen, H. Z.; Tang, L. L.; Yu, X. L.; Zhou, J.; Chang, Y. F.; Wu, X. Bioinformatics analysis of epitope-based vaccine design against the novel SARS-CoV-2. Infect. Dis. Poverty 2020, 9, 88.

163

Sun, Q. H.; Radosz, M.; Shen, Y. Q. Challenges in design of translational nanocarriers. J. Control. Release 2012, 164, 156–169.

164

Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.

165

Ganguly, P.; Breen, A.; Pillai, S. C. Toxicity of nanomaterials: Exposure, pathways, assessment, and recent advances. ACS Biomater. Sci. Eng. 2018, 4, 2237–2275.

166

Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343.

167

Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M. B.; Pan, D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 2020, 14, 7617–7627.

168

Balagna, C.; Perero, S.; Percivalle, E.; Nepita, E. V.; Ferraris, M. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceram. 2020, 1, 100006.

169

Islam, N.; Ferro, V. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery. Nanoscale 2016, 8, 14341–14358.

170
Attama, A. A.; Momoh, M. A.; Builders, P. F. Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development. In Recent Advances in Novel Drug Carrier Systems;Sezer, A. D. Ed.; IntechOpen, 2012.
171

Schwendener, R. A. Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines 2014, 2, 159–182.

172

Gharbavi, M.; Amani, J.; Kheiri-Manjili, H.; Danafar, H.; Sharafi, A. Niosome: A promising nanocarrier for natural drug delivery through blood–brain barrier. Adv. Pharmacol. Sci. 2018, 2018, 6847971.

173
Chime, S. A.; Kenechukwu, F. C.; Attama, A. A. Nanoemulsions-Advances in Formulation, Characterization and Applications in Drug Delivery; IntechOpen, 2014.https://doi.org/10.5772/58673
DOI
174

Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387.

175

Gabizon, A.; Papahadjopoulos, D. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA 1988, 85, 6949–6953.

176

Bal, S. M.; Hortensius, S.; Ding, Z.; Jiskoot, W.; Bouwstra, J. A. Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine 2011, 29, 1045–1052.

177

Zhuang, Y.; Ma, Y. F.; Wang, C.; Hai, L.; Yan, C.; Zhang, Y. J.; Liu, F. Z.; Cai, L. T. PEGylated cationic liposomes robustly augment vaccine-induced immune responses: Role of lymphatic trafficking and biodistribution. J. Control. Release 2012, 159, 135–142.

178

Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18.

179

Makadia, H. K.; Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397.

180

Feczkó, T.; Tóth, J.; Dósa, G.; Gyenis, J. Optimization of protein encapsulation in PLGA nanoparticles. Chem. Eng. Proc. Process Intensificat. 2011, 50, 757–765.

181

Moon, J. J.; Suh, H.; Polhemus, M. E.; Ockenhouse, C. F.; Yadava, A.; Irvine, D. J. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS One 2012, 7, e31472.

182

Tamada, J. A.; Langer, R. Erosion kinetics of hydrolytically degradable polymers. Proc. Natl. Acad. Sci. USA 1993, 90, 552–556.

183

Abbasi, E.; Aval, S. F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H. T.; Joo, S. W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 247.

184

Kannan, R. M.; Nance, E.; Kannan, S.; Tomalia, D. A. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications. J. Intern. Med. 2014, 276, 579–617.

185

Braun, C. S.; Vetro, J. A.; Tomalia, D. A.; Koe, G. S.; Koe, J. G.; Middaugh, C. R. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J. Pharm. Sci. 2005, 94, 423–436.

186

Daftarian, P.; Kaifer, A. E.; Li, W.; Blomberg, B. B.; Frasca, D.; Roth, F.; Chowdhury, R.; Berg, E. A.; Fishman, J. B.; Al Sayegh, H. A. et al. Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res. 2011, 71, 7452–7462.

187

Ma, C.; Zhu, D. D.; Chen, Y.; Dong, Y. W.; Lin, W. Y.; Li, N.; Zhang, W. J.; Liu, X. X. Amphiphilic peptide dendrimer-based nanovehicles for safe and effective siRNA delivery. Biophys. Rep. 2020, 6, 278–289.

188

Hong, F.; Zhang, F.; Liu, Y.; Yan, H. DNA origami: Scaffolds for creating higher order structures. Chem. Rev. 2017, 117, 12584–12640.

189

Eskandari, S.; Guerin, T.; Toth, I.; Stephenson, R. J. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv. Drug Deliv. Rev. 2017, 110–111,169-187.

190

López-Sagaseta, J.; Malito, E.; Rappuoli, R.; Bottomley, M. J. Self-assembling protein nanoparticles in the design of vaccines. Comput. Struct. Biotechnol. J. 2016, 14, 58–68.

191

Kim, I.; Moon, J. S.; Oh, J. W. Recent advances in M13 bacteriophage-based optical sensing applications. Nano Converg. 2016, 3, 27.

192

Moon, J. S.; Kim, W. G.; Kim, C.; Park, G. T.; Heo, J.; Yoo, S. Y.; Oh, J. W. M13 bacteriophage-based self-assembly structures and their functional capabilities. Mini. Rev. Org. Chem. 2015, 12, 271–281.

193

Henry, K. A.; Arbabi-Ghahroudi, M.; Scott, J. K. Beyond phage display: Non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front. Microbiol. 2015, 6, 755.

194

Anselmo, A. C.; Mitragotri, S. A review of clinical translation of inorganic nanoparticles. AAPS J. 2015, 17, 1041–1054.

195

He, H.; Pham-Huy, L. A.; Dramou, P.; Xiao, D. L.; Zuo, P. L.; Pham-Huy, C. Carbon nanotubes: Applications in pharmacy and medicine. BioMed Res. Int. 2013, 2013, 578290.

196
Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T. et al. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013, 7, 3926–3938.https://doi.org/10.1021/nn3057005
DOI
197

Steinman, R. M.; Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 1973, 137, 1142–1162.

198

Palucka, K.; Banchereau, J. Dendritic cells: A link between innate and adaptive immunity. J. Clin. Immunol. 1999, 19, 12–25.

199

Mehta-Damani, A.; Markowicz, S.; Engleman, E. G. Generation of antigen-specific CD4+ T cell lines from naive precursors. Eur. J. Immunol. 1995, 25, 1206–1211.

200

Mehta-Damani, A.; Markowicz, S.; Engleman, E. G. Generation of antigen-specific CD8+ CTLs from naive precursors. J. Immunol. 1994, 153, 996–1003.

201

Steinman, R. M.; Nussenzweig, M. C. Avoiding horror autotoxicus: The importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA 2002, 99, 351–358.

202

Bonifaz, L.; Bonnyay, D.; Mahnke, K.; Rivera, M.; Nussenzweig, M. C.; Steinman, R. M. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 2002, 196, 1627–1638.

203

Hawiger, D.; Inaba, K.; Dorsett, Y.; Guo, M.; Mahnke, K.; Rivera, M.; Ravetch, J. V.; Steinman, R. M.; Nussenzweig, M. C. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 2001, 194, 769–779.

204

Soares, H.; Waechter, H.; Glaichenhaus, N.; Mougneau, E.; Yagita, H.; Mizenina, O.; Dudziak, D.; Nussenzweig, M. C.; Steinman, R. M. A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo. J. Exp. Med. 2007, 204, 1095–1106.

205

Albert, M. L.; Pearce, S. F. A.; Francisco, L. M.; Sauter, B.; Roy, P.; Silverstein, R. L.; Bhardwaj, N. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 1998, 188, 1359–1368.

206

de Baey, A.; Lanzavecchia, A. The role of aquaporins in dendritic cell macropinocytosis. J. Exp. Med. 2000, 191, 743–748.

207

Geijtenbeek, T. B. H.; Gringhuis, S. I. Signalling through C-type lectin receptors: Shaping immune responses. Nat. Rev. Immunol. 2009, 9, 465–479.

208

Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 2014, 5, 461.

209

Trombetta, E. S.; Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 2005, 23, 975–1028.

210

Fujimoto, Y.; Tu, L. L.; Miller, A. S.; Bock, C.; Fujimoto, M.; Doyle, C.; Steeber, D. A.; Tedder, T. F. CD83 expression influences CD4+ T cell development in the thymus. Cell 2002, 108, 755–767.

211

Kurd, N.; Robey, E. A. T-cell selection in the thymus: A spatial and temporal perspective. Immunol. Rev. 2016, 271, 114–126.

212

Vacchio, M. S.; Bosselut, R. What happens in the thymus does not stay in the thymus: How T cells recycle the CD4+-CD8+ lineage commitment transcriptional circuitry to control their function. J. Immunol. 2016, 196, 4848–4856.

213

Pennock, N. D.; White, J. T.; Cross, E. W.; Cheney, E. E.; Tamburini, B. A.; Kedl, R. M. T cell responses: Naive to memory and everything in between. Adv. Physiol. Educ. 2013, 37, 273–283.

214

Nurieva, R. I.; Chung, Y. Understanding the development and function of T follicular helper cells. Cell. Mol. Immunol. 2010, 7, 190–197.

215

Dalod, M.; Chelbi, R.; Malissen, B.; Lawrence, T. Dendritic cell maturation: Functional specialization through signaling specificity and transcriptional programming. EMBO J. 2014, 33, 1104–1116.

216

Blum, J. S.; Wearsch, P. A.; Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 2013, 31, 443–473.

217

Embgenbroich, M.; Burgdorf, S. Current concepts of antigen cross-presentation. Front. Immunol. 2018, 9, 1643.

218

Lanzavecchia, A. Mechanisms of antigen uptake for presentation. Curr. Opin. Immunol. 1996, 8, 348–354.

219

Reddy, S. T.; Rehor, A.; Schmoekel, H. G.; Hubbell, J. A.; Swartz, M. A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 2006, 112, 26–34.

220

Cho, K.; Wang, X.; Nie, S. M.; Chen, Z.; Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310–1316.

221

Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283–318.

222

Wei, Y. C.; Quan, L.; Zhou, C.; Zhan, Q. Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine 2018, 13, 1495–1512.

223

Narasimhan, B.; Goodman, J. T.; Vela Ramirez, J. E. Rational design of targeted next-generation carriers for drug and vaccine delivery. Annu. Rev. Biomed. Eng. 2016, 18, 25–49.

224

Peek, L. J.; Middaugh, C. R.; Berkland, C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev. 2008, 60, 915–928.

225

Ura, T.; Okuda, K.; Shimada, M. Developments in viral vector-based vaccines. Vaccines 2014, 2, 624–641.

226

Biswas, S. K.; Boutz, P. L.; Nayak, D. P. Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J. Virol. 1998, 72, 5493–5501.

227

Portela, A.; Digard, P. The influenza virus nucleoprotein: A multifunctional RNA-binding protein pivotal to virus replication. J. Gen. Virol. 2002, 83, 723–734.

228

Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J. S.; Zhu, M. Z.; Cloney-Clark, S.; Zhou, H. X. et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. 2020, 383, 2320–2332.

229

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

230

Monopoli, M. P.; Åberg, C.; Salvati, A.; Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779–786.

231

Ritz, S.; Schöttler, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Kuharev, J.; Landfester, K.; Schild, H.; Jahn, O.; Tenzer, S. et al. Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules 2015, 16, 1311–1321.

232

Billeskov, R.; Beikzadeh, B.; Berzofsky, J. A. The effect of antigen dose on T cell-targeting vaccine outcome. Hum. Vaccin. Immunother. 2019, 15, 407–411.

233

Arvin, A. M.; Fink, K.; Schmid, M. A.; Cathcart, A.; Spreafico, R.; Havenar-Daughton, C.; Lanzavecchia, A.; Corti, D.; Virgin, H. W. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 2020, 584, 353–363.

234

Vert, M.; Doi, Y.; Hellwich, K. H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410.

235

Zhao, J. C.; Stenzel, M. H. Entry of nanoparticles into cells: The importance of nanoparticle properties. Polym. Chem. 2018, 9, 259–272.

236

Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244.

237

Foroozandeh, P.; Aziz, A. A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13, 339.

238

Bachmann, M. F.; Jennings, G. T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787–796.

239

Moghimi, S. M.; Patel, H. M. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system-the concept of tissue specificity. Adva. Drug Deliv. Rev. 1998, 32, 45–60.

240

Storm, G.; Belliot, S. O.; Daemen, T.; Lasic, D. D. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 1995, 17, 31–48.

241

Anselmo, A. C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143.

242

Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12.

243

Ventola, C. L. Progress in nanomedicine: Approved and investigational nanodrugs. P T 2017, 42, 742–755.

244

Talmage, D. W. The acceptance and rejection of immunological concepts. Annu. Rev. Immunol. 1986, 4, 1–12.

245

Strugnell, R.; Zepp, F.; Cunningham, A.; Tantawichien, T. Vaccine antigens. Perspect. Vaccinol. 2011, 1, 61–88.

246

Hamborg, M.; Jorgensen, L.; Bojsen, A. R.; Christensen, D.; Foged, C. Protein antigen adsorption to the DDA/TDB liposomal adjuvant: Effect on protein structure, stability, and liposome physicochemical characteristics. Pharm. Res. 2013, 30, 140–155.

247

Hansen, B.; Sokolovska, A.; HogenEsch, H.; Hem, S. L. Relationship between the strength of antigen adsorption to an aluminum-containing adjuvant and the immune response. Vaccine 2007, 25, 6618–6624.

248

Blakney, A. K.; McKay, P. F.; Yus, B. I.; Aldon, Y.; Shattock, R. J. Inside out: Optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther. 2019, 26, 363–372.

249

Takamura, S.; Niikura, M.; Li, T. C.; Takeda, N.; Kusagawa, S.; Takebe, Y.; Miyamura, T.; Yasutomi, Y. DNA vaccine-encapsulated virus-like particles derived from an orally transmissible virus stimulate mucosal and systemic immune responses by oral administration. Gene Ther. 2004, 11, 628–635.

250

Cao, P.; Han, F. Y.; Grøndahl, L.; Xu, Z. P.; Li, L. Enhanced oral vaccine efficacy of polysaccharide-coated calcium phosphate nanoparticles. ACS Omega 2020, 5, 18185–18197.

251

Pawar, D.; Mangal, S.; Goswami, R.; Jaganathan, K. S. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: Effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur. J. Pharm. Biopharm. 2013, 85, 550–559.

252

van Broekhoven, C. L.; Parish, C. R.; Demangel, C.; Britton, W. J.; Altin, J. G. Targeting dendritic cells with antigen-containing liposomes. Cancer Res. 2004, 64, 4357–4365.

253

Zeng, B. J.; Middelberg, A. P. J.; Gemiarto, A.; MacDonald, K.; Baxter, A. G.; Talekar, M.; Moi, D.; Tullett, K. M.; Caminschi, I.; Lahoud, M. H. et al. Self-adjuvanting nanoemulsion targeting dendritic cell receptor Clec9A enables antigen-specific immunotherapy. J. Clin. Invest. 2018, 128, 1971–1984.

254

de Titta, A.; Ballester, M.; Julier, Z.; Nembrini, C.; Jeanbart, L.; van der Vlies, A. J.; Swartz, M. A.; Hubbell, J. A. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc. Natl. Acad. Sci. USA 2013, 110, 19902–19907.

255

Scaria, P. V.; Chen, B.; Rowe, C. G.; Jones, D. S.; Barnafo, E.; Fischer, E. R.; Anderson, C.; MacDonald, N. J.; Lambert, L.; Rausch, K. M. et al. Protein-protein conjugate nanoparticles for malaria antigen delivery and enhanced immunogenicity. PLoS One 2017, 12, e0190312.

256

Friedman, A. D.; Claypool, S. E.; Liu, R. H. The smart targeting of nanoparticles. Curr. Pharm. Des. 2013, 19, 6315–6329.

257

Jeanbart, L.; Ballester, M.; de Titta, A.; Corthésy, P.; Romero, P.; Hubbell, J. A.; Swartz, M. A. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol. Res. 2014, 2, 436–447.

258

Harding, C. V.; Collins, D. S.; Slot, J. W.; Geuze, H. J.; Unanue, E. R. Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell 1991, 64, 393–401.

259

Sancho, D.; Reis e Sousa, C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 2012, 30, 491–529.

260

Azad, A. K.; Rajaram, M. V. S.; Schlesinger, L. S. Exploitation of the macrophage mannose receptor (CD206) in infectious disease diagnostics and therapeutics. J. Cytol. Mol. Biol. 2014, 1, 1000003.

261

Ponka, P.; Lok, C. N. The transferrin receptor: Role in health and disease. Int. J. Biochem. Cell Biol. 1999, 31, 1111–1137.

262

Nimmerjahn, F.; Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008, 8, 34–47.

263

Treanor, B. B-cell receptor: From resting state to activate. Immunology 2012, 136, 21–27.

264

Al-Barwani, F.; Young, S. L.; Baird, M. A.; Larsen, D. S.; Ward, V. K. Mannosylation of virus-like particles enhances internalization by antigen presenting cells. PLoS One 2014, 9, e104523.

265

Hong, S.; Zhang, Z. M.; Liu, H. T.; Tian, M. J.; Zhu, X. P.; Zhang, Z. Q.; Wang, W. H.; Zhou, X. Y.; Zhang, F. P.; Ge, Q. et al. B Cells are the dominant antigen-presenting cells that activate naive CD4+ T cells upon immunization with a virus-derived nanoparticle antigen. Immunity 2018, 49, 695–708.e4.

266

Storni, T.; Lechner, F.; Erdmann, I.; Bächi, T.; Jegerlehner, A.; Dumrese, T.; Kündig, T. M.; Ruedl, C.; Bachmann, M. F. Critical role for activation of antigen-presenting cells in priming of cytotoxic T cell responses after vaccination with virus-like particles. J. Immunol. 2002, 168, 2880–2886.

267

Tanaka, Y.; Taneichi, M.; Kasai, M.; Kakiuchi, T.; Uchida, T. Liposome-coupled antigens are internalized by antigen-presenting cells via pinocytosis and cross-presented to CD8+ T cells. PLoS One 2010, 5, e15225.

268

Taneichi, M.; Ishida, H.; Kajino, K.; Ogasawara, K.; Tanaka, Y.; Kasai, M.; Mori, M.; Nishida, M.; Yamamura, H.; Mizuguchi, J. et al. Antigen Chemically coupled to the surface of liposomes are cross-presented to CD8+ T cells and induce potent antitumor immunity. J. Immunol. 2006, 177, 2324–2330.

269

Dykman, L. A. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev. Vaccines 2020, 19, 465–477.

270

Wang, C.; Zhu, W. D.; Luo, Y.; Wang, B. Z. Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. Nanomedicine:Nanotechnol. Biol. Med. 2018, 14, 1349–1360.

271

Zhou, Q. Q.; Zhang, Y. L.; Du, J.; Li, Y.; Zhou, Y.; Fu, Q. X.; Zhang, J. G.; Wang, X. H.; Zhan, L. S. Different-sized gold nanoparticle activator/antigen increases dendritic cells accumulation in liver-draining lymph nodes and CD8+ T cell responses. ACS Nano 2016, 10, 2678–2692.

272

Raghuwanshi, D.; Mishra, V.; Das, D.; Kaur, K.; Suresh, M. R. Dendritic cell targeted chitosan nanoparticles for nasal DNA immunization against SARS CoV nucleocapsid protein. Mol. Pharm. 2012, 9, 946–956.

273

Brenner, S.; Jacob, F.; Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 1961, 190, 576–581.

274

Wolff, J. A.; Malone, R. W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P. L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468.

275

Garneau, N. L.; Wilusz, J.; Wilusz, C. J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 2007, 8, 113–126.

276

Ross, J. mRNA stability in mammalian cells. Microbiol. Rev. 1995, 59, 423–450.

277

Holtkamp, S.; Kreiter, S.; Selmi, A.; Simon, P.; Koslowski, M.; Huber, C.; Türeci, Ö.; Sahin, U. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006, 108, 4009–4017.

278
Pascolo, S. Vaccination with messenger RNA (mRNA). In Toll-Like Receptors (TLRs) and Innate Immunity. Bauer, S.; Hartmann, G., Eds.; Springer: Berlin, Heidelberg, 2008; pp 221–235.https://doi.org/10.1007/978-3-540-72167-3_11
DOI
279

Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines-a new era in vaccinology. Nat. Rev. Drug Dis. 2018, 17, 261–279.

280

Brito, L. A.; Kommareddy, S.; Maione, D.; Uematsu, Y.; Giovani, C.; Berlanda Scorza, F.; Otten, G. R.; Yu, D.; Mandl, C. W.; Mason, P. W. et al. Self-amplifying mRNA vaccines. Adv. Genet. 2015, 89, 179–233.

281

Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol. 2012, 9, 1319–1330.

282

Sato, K.; Akiyama, M.; Sakakibara, Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat. Commun. 2021, 12, 941.

283

Mao, K. K.; Wang, J.; Xiao, Y. Prediction of RNA secondary structure with pseudoknots using coupled deep neural networks. Biophys. Rep. 2020, 6, 146–154.

284

Bellaousov, S.; Reuter, J. S.; Seetin, M. G.; Mathews, D. H. RNAstructure: Web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res. 2013, 41, W471–W474.

285

Janssen, S.; Giegerich, R. The RNA shapes studio. Bioinformatics 2015, 31, 423–425.

286

Zeng, C. X.; Hou, X. C.; Yan, J. Y.; Zhang, C. X.; Li, W. Q.; Zhao, W. Y.; Du, S.; Dong, Y. Z. Leveraging mRNA sequences and nanoparticles to deliver SARS-CoV-2 antigens in vivo. Adv. Mater. 2020, 32, 2004452.

287

Wrapp, D.; Wang, N.; Corbett, K. S.; Goldsmith, J. A.; Hsieh, C. L.; Abiona, O.; Graham, B. S.; McLellan, J. S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263.

288

Hassett, K. J.; Benenato, K. E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B. M.; Ketova, T. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 2019, 15, 1–11.

289

Graham, B. S.; Gilman, M. S. A.; McLellan, J. S. Structure-based vaccine antigen design. Annu. Rev. Med. 2019, 70, 91–104.

290

Jackson, L. A.; Anderson, E. J.; Rouphael, N. G.; Roberts, P. C.; Makhene, M.; Coler, R. N.; McCullough, M. P.; Chappell, J. D.; Denison, M. R.; Stevens, L. J. et al. An mRNA vaccine against SARS-CoV-2-preliminary report. N. Engl. J. Med. 2020, 383, 1920–1931.

291

Baden, L. R.; El Sahly, H. M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S. A.; Rouphael, N.; Creech, C. B. et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416.

292

Wang, P. F.; Nair, M. S.; Liu, L. H.; Iketani, S.; Luo, Y.; Guo, Y. C.; Wang, M.; Yu, J.; Zhang, B. S.; Kwong, P. D. et al. Antibody resistance of SARS-CoV-2 variants B. 1.351 and B. 1.1. 7. Nature 2021, 593, 130–135.

293

Wu, K.; Werner, A. P.; Koch, M.; Choi, A.; Narayanan, E.; Stewart-Jones, G. B. E.; Colpitts, T.; Bennett, H.; Boyoglu-Barnum, S.; Shi, W. et al. Serum neutralizing activity elicited by mRNA-1273 vaccine. N. Engl. J. Med. 2021, 384, 1468–1470.

294

Karikó, K.; Muramatsu, H.; Welsh, F. A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008, 16, 1833–1840.

295

Tai, W. B.; Zhao, G. Y.; Sun, S. H.; Guo, Y.; Wang, Y. F.; Tao, X. R.; Tseng, C. T. K.; Li, F.; Jiang, S. B.; Du, L. Y. et al. A recombinant receptor-binding domain of MERS-CoV in trimeric form protects human dipeptidyl peptidase 4 (hDPP4) transgenic mice from MERS-CoV infection. Virology 2016, 499, 375–382.

296

Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401.

297

Mulligan, M. J.; Lyke, K. E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K. A. et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020, 586, 589–593.

298

Walsh, E. E.; Frenck, R. W. Jr.; Falsey, A. R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M. J.; Bailey, R. et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N. Engl. J. Med. 2020, 383, 2439–2450.

299

Polack, F. P.; Thomas, S. J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J. L.; Pérez Marc, G.; Moreira, E. D.; Zerbini, C. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615.

300

Planas, D.; Bruel, T.; Grzelak, L.; Guivel-Benhassine, F.; Staropoli, I.; Porrot, F.; Planchais, C.; Buchrieser, J.; Rajah, M. M.; Bishop, E. et al. Sensitivity of infectious SARS-CoV-2 B. 1.1. 7 and B. 1.351 variants to neutralizing antibodies. Nat. Med. 2021, 27, 917–924.

301

Jose, J.; Snyder, J. E.; Kuhn, R. J. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol. 2009, 4, 837–856.

302

Atkins, G. J.; Fleeton, M. N.; Sheahan, B. J. Therapeutic and prophylactic applications of alphavirus vectors. Expert Rev. Mol. Med. 2008, 10, e33.

303

Lundstrom, K. Alphaviruses in gene therapy. Viruses 2015, 7, 2321–2333.

304

Tubulekas, I.; Berglund, P.; Fleeton, M.; Liljeström, P. Alphavirus expression vectors and their use as recombinant vaccines: A minireview. Gene 1997, 190, 191–195.

305

Zhou, X.; Berglund, P.; Rhodes, G.; Parker, S. E.; Jondal, M.; Liljeström, P. Self-replicating Semliki Forest virus RNA as recombinant vaccine. Vaccine 1994, 12, 1510–1514.

306

Vogel, A. B.; Lambert, L.; Kinnear, E.; Busse, D.; Erbar, S.; Reuter, K. C.; Wicke, L.; Perkovic, M.; Beissert, T.; Haas, H. et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 2018, 26, 446–455.

307

Geall, A. J.; Verma, A.; Otten, G. R.; Shaw, C. A.; Hekele, A.; Banerjee, K.; Cu, Y.; Beard, C. W.; Brito, L. A.; Krucker, T. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA 2012, 109, 14604–14609.

308

Goswami, R.; Chatzikleanthous, D.; Lou, G.; Giusti, F.; Bonci, A.; Taccone, M.; Brazzoli, M.; Gallorini, S.; Ferlenghi, I.; Berti, F. et al. Mannosylation of LNP results in improved potency for self-amplifying RNA (SAM) vaccines. ACS Infect. Dis. 2019, 5, 1546–1558.

309

Kirchdoerfer, R. N.; Wang, N. S.; Pallesen, J.; Wrapp, D.; Turner, H. L.; Cottrell, C. A.; Corbett, K. S.; Graham, B. S.; McLellan, J. S.; Ward, A. B. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci. Rep. 2018, 8, 15701.

310

Blakney, A. K.; McKay, P. F.; Shattock, R. J. Structural Components for amplification of positive and negative strand VEEV splitzicons. Front. Mol. Biosci. 2018, 5, 71.

311

Pardi, N.; Tuyishime, S.; Muramatsu, H.; Kariko, K.; Mui, B. L.; Tam, Y. K.; Madden, T. D.; Hope, M. J.; Weissman, D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control. Release 2015, 217, 345–351.

312

McKay, P. F.; Hu, K.; Blakney, A. K.; Samnuan, K.; Brown, J. C.; Penn, R.; Zhou, J.; Bouton, C. R.; Rogers, P.; Polra, K. et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat. Commun. 2020, 11, 3523.

313

Kinney, R. M.; Chang, G. J.; Tsuchiya, K. R.; Sneider, J. M.; Roehrig, J. T.; Woodward, T. M.; Trent, D. W. Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5'-noncoding region and the E2 envelope glycoprotein. J. Virol. 1993, 67, 1269–1277.

314

Desbien, A. L.; Reed, S. J.; Bailor, H. R.; Cauwelaert, N. D.; Laurance, J. D.; Orr, M. T.; Fox, C. B.; Carter, D.; Reed, S. G.; Duthie, M. S. Squalene emulsion potentiates the adjuvant activity of the TLR4 agonist, GLA, via inflammatory caspases, IL-18, and IFN-γ. Eur. J. Immunol. 2015, 45, 407–417.

315

Yu, E. Y.; Chandrasekharan, P.; Berzon, R.; Tay, Z. W.; Zhou, X. Y.; Khandhar, A. P.; Ferguson, R. M.; Kemp, S. J.; Zheng, B.; Goodwill, P. W. et al. Magnetic particle imaging for highly sensitive, quantitative, and safe in vivo gut bleed detection in a Murine model. ACS Nano 2017, 11, 12067–12076.

316

Erasmus, J. H.; Khandhar, A. P.; O’Connor, M. A.; Walls, A. C.; Hemann, E. A.; Murapa, P.; Archer, J.; Leventhal, S.; Fuller, J. T.; Lewis, T. B. et al. An Alphavirus-derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci. Transl. Med. 2020, 12, eabc9396.

317

Kay, M. A.; He, C. Y.; Chen, Z. Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol. 2010, 28, 1287–1289.

318

Schleef, M.; Schirmbeck, R.; Reiser, M.; Michel, M. L.; Schmeer, M. Minicircle: Next generation DNA vectors for vaccination. Methods Mol. Biol. 2015, 1317, 327–339.

319

Farris, E.; Brown, D. M.; Ramer-Tait, A. E.; Pannier, A. K. Micro- and nanoparticulates for DNA vaccine delivery. Exp. Biol. Med. 2016, 241, 919–929.

320

McCluskie, M. J.; Brazolot Millan, C. L.; Gramzinski, R. A.; Robinson, H. L.; Santoro, J. C.; Fuller, J. T.; Widera, G.; Haynes, J. R.; Purcell, R. H.; Davis, H. L. Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. Mol. Med. 1999, 5, 287–300.

321

Xu, Y. Y.; Yuen, P. W.; Lam, J. K. W. Intranasal DNA vaccine for protection against respiratory infectious diseases: The delivery perspectives. Pharmaceutics 2014, 6, 378–415.

322

Cui, Z. R. DNA vaccine. Adv. Genet. 2005, 54, 257–289.

323

Ulmer, J. B.; Donnelly, J. J.; Parker, S. E.; Rhodes, G. H.; Felgner, P. L.; Dwarki, V. J.; Gromkowski, S. H.; Deck, R. R.; DeWitt, C. M.; Friedman, A. et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993, 259, 1745–1749.

324

Quaak, S. G. L.; Haanen, J. B. A. G.; Beijnen, J. H.; Nuijen, B. Naked plasmid DNA formulation: Effect of different disaccharides on stability after lyophilisation. AAPS PharmSciTech 2010, 11, 344–350.

325

Carabineiro, S. A. C. Applications of gold nanoparticles in nanomedicine: Recent advances in vaccines. Molecules 2017, 22, 857.

326

Dean, H. J.; Fuller, D.; Osorio, J. E. Powder and particle-mediated approaches for delivery of DNA and protein vaccines into the epidermis. Comp. Immunol., Microbiology and Infectious Diseases 2003, 26, 373–388.

327

Perrie, Y.; Frederik, P. M.; Gregoriadis, G. Liposome-mediated DNA vaccination: The effect of vesicle composition. Vaccine 2001, 19, 3301–3310.

328

Wang, Z.; Troilo, P. J.; Wang, X.; Griffiths II, T. G.; Pacchione, S. J.; Barnum, A. B.; Harper, L. B.; Pauley, C. J.; Niu, Z.; Denisova, L. et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004, 11, 711–721.

329

Diehl, M. C.; Lee, J. C.; Daniels, S. E.; Tebas, P.; Khan, A. S.; Giffear, M.; Sardesai, N. Y.; Bagarazzi, M. L. Tolerability of intramuscular and intradermal delivery by CELLECTRA® adaptive constant current electroporation device in healthy volunteers. Hum. Vaccin. Immunother. 2013, 9, 2246–2252.

330

Sardesai, N. Y.; Weiner, D. B. Electroporation delivery of DNA vaccines: Prospects for success. Curr. Opin. Immunol. 2011, 23, 421–429.

331

Xu, Z. Y.; Wise, M. C.; Choi, H.; Perales-Puchalt, A.; Patel, A.; Tello-Ruiz, E.; Chu, J. D.; Muthumani, K.; Weiner, D. B. Synthetic DNA delivery by electroporation promotes robust in vivo sulfation of broadly neutralizing anti-HIV immunoadhesin eCD4-Ig. EBioMedicine 2018, 35, 97–105.

332

Smith, T. R. F.; Patel, A.; Ramos, S.; Elwood, D.; Zhu, X. Z.; Yan, J.; Gary, E. N.; Walker, S. N.; Schultheis, K.; Purwar, M. et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 2020, 11, 2601.

333

Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438–444.

334

Fersht, A.; Winter, G. Protein engineering. Trends Biochem. Sci. 1992, 17, 292–294.

335

Da Silva, D. M.; Velders, M. P.; Nieland, J. D.; Schiller, J. T.; Nickoloff, B. J.; Kast, W. M. Physical interaction of human papillomavirus virus-like particles with immune cells. Int. Immunol. 2001, 13, 633–641.

336

Nasir, W.; Bally, M.; Zhdanov, V. P.; Larson, G.; Höök, F. Interaction of virus-like particles with vesicles containing glycolipids: Kinetics of detachment. J. Phys. Chem. B 2015, 119, 11466–11472.

337

Zdanowicz, M.; Chroboczek, J. Virus-like particles as drug delivery vectors. Acta Biochim. Pol. 2016, 63, 469–473.

338

Schwarz, B.; Uchida, M.; Douglas, T. Chapter one-biomedical and catalytic opportunities of virus-like particles in nanotechnology. Adv. Virus Res. 2017, 97, 1–60.

339

McAleer, W. J.; Buynak, E. B.; Maigetter, R. Z.; Wampler, D. E.; Miller, W. J.; Hilleman, M. R. Human hepatitis B vaccine from recombinant yeast. Nature 1984, 307, 178–180.

340

Grgacic, E. V. L.; Anderson, D. A. Virus-like particles: Passport to immune recognition. Methods 2006, 40, 60–65.

341

Vicente, T.; Roldão, A.; Peixoto, C.; Carrondo, M. J.; Alves, P. M. Large-scale production and purification of VLP-based vaccines. J. Invertebr. Pathol. 2011, 107 Suppl, S42–S48.

342

Zhu, N.; Zhang, D. Y.; Wang, W. L.; Li, X. W.; Yang, B.; Song, J. D.; Zhao, X.; Huang, B. Y.; Shi, W. F.; Lu, R. J. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733.

343

Mortola, E.; Roy, P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 2004, 576, 174–178.

344

Xu, R. D.; Shi, M. F.; Li, J.; Song, P.; Li, N. Construction of SARS-CoV-2 virus-like particles by mammalian expression system. Front. Bioeng. Biotechnol. 2020, 8, 862.

345

Fernandes, F.; Teixeira, A. P.; Carinhas, N.; Carrondo, M. J. T.; Alves, P. M. Insect cells as a production platform of complex virus-like particles. Expert Rev. Vaccines 2013, 12, 225–236.

346

Liu, F. X.; Wu, X. D.; Li, L.; Liu, Z. S.; Wang, Z. L. Use of baculovirus expression system for generation of virus-like particles: Successes and challenges. Protein Expr. Purif. 2013, 90, 104–116.

347

Shen, S.; Lin, P. S.; Chao, Y. C.; Zhang, A. H.; Yang, X. M.; Lim, S. G.; Hong, W. J.; Tan, Y. J. The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochem. Biophys. Res. Commun. 2005, 330, 286–292.

348

Siu, Y. L.; Teoh, K. T.; Lo, J.; Chan, C. M.; Kien, F.; Escriou, N.; Tsao, S. W.; Nicholls, J. M.; Altmeyer, R.; Peiris, J. S. M. et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol. 2008, 82, 11318–11330.

349

Zhao, P.; Ke, J. S.; Qin, Z. L.; Ren, H.; Zhao, L. J.; Yu, J. G.; Gao, J.; Zhu, S. Y.; Qi, Z. T. DNA vaccine of SARS-Cov S gene induces antibody response in mice. Acta Biochim. Biophys. Sin. 2004, 36, 37–41.

350

Wang, C. Y.; Li, W. T.; Drabek, D.; Okba, N. M. A.; van Haperen, R.; Osterhaus, A. D. M. E.; van Kuppeveld, F. J. M.; Haagmans, B. L.; Grosveld, F.; Bosch, B. J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 2020, 11, 2251.

351

Cao, W. C.; Liu, W.; Zhang, P. H.; Zhang, F.; Richardus, J. H. Disappearance of antibodies to SARS-associated coronavirus after recovery. N. Engl. J. Med. 2007, 357, 1162–1163.

352

Le Bert, N.; Tan, A. T.; Kunasegaran, K.; Tham, C. Y. L.; Hafezi, M.; Chia, A.; Chng, M. H. Y.; Lin, M. Y.; Tan, N.; Linster, M. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020, 584, 457–462.

353

de Haan, C. A. M.; Kuo, L. L.; Masters, P. S.; Vennema, H.; Rottier, P. J. M. Coronavirus particle assembly: Primary structure requirements of the membrane protein. J. Virol. 1998, 72, 6838–6850.

354

DeDiego, M. L.; Álvarez, E.; Almazán, F.; Rejas, M. T.; Lamirande, E.; Roberts, A.; Shieh, W. J.; Zaki, S. R.; Subbarao, K.; Enjuanes, L. A severe acute respiratory syndrome coronavirus that lacks the e gene is attenuated in vitro and in vivo. J. Virol. 2007, 81, 1701–1713.

355

Ortego, J.; Ceriani, J. E.; Patiño, C.; Plana, J.; Enjuanes, L. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway. Virology 2007, 368, 296–308.

356

Tissot, A. C.; Renhofa, R.; Schmitz, N.; Cielens, I.; Meijerink, E.; Ose, V.; Jennings, G. T.; Saudan, P.; Pumpens, P.; Bachmann, M. F. Versatile virus-like particle carrier for epitope based vaccines. PLoS One 2010, 5, e9809.

357

Li, K. Y.; Peers-Adams, A.; Win, S. J.; Scullion, S.; Wilson, M.; Young, V. L.; Jennings, P.; Ward, V. K.; Baird, M. A.; Young, S. L. Antigen incorporated in virus-like particles is delivered to specific dendritic cell subsets that induce an effective antitumor immune response in vivo. J. Immunother. 2013, 36, 11–19.

358

Ruedl, C.; Storni, T.; Lechner, F.; Bächi, T.; Bachmann, M. F. Cross-presentation of virus-like particles by skin-derived CD8– dendritic cells: A dispensable role for TAP. Eur. J. Immunol. 2002, 32, 818–825.

DOI
359

Liu, Y. V.; Massare, M. J.; Barnard, D. L.; Kort, T.; Nathan, M.; Wang, L.; Smith, G. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine 2011, 29, 6606–6613.

360

Gillitzer, E.; Willits, D.; Young, M.; Douglas, T. Chemical modification of a viral cage for multivalent presentation. Chem. Commun. 2002, 21, 2390–2391.

361

Smith, M. T.; Hawes, A. K.; Bundy, B. C. Reengineering viruses and virus-like particles through chemical functionalization strategies. Curr. Opin. Biotechnol. 2013, 24, 620–626.

362

Thrane, S.; Janitzek, C. M.; Agerbæk, M. Ø.; Ditlev, S. B.; Resende, M.; Nielsen, M. A.; Theander, T. G.; Salanti, A.; Sander, A. F. A novel virus-like particle based vaccine platform displaying the placental malaria antigen VAR2CSA. PLoS One 2015, 10, e0143071.

363

Zakeri, B.; Fierer, J. O.; Celik, E.; Chittock, E. C.; Schwarz-Linek, U.; Moy, V. T.; Howarth, M. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. USA 2012, 109, E690–E697.

364

Brune, K. D.; Leneghan, D. B.; Brian, I. J.; Ishizuka, A. S.; Bachmann, M. F.; Draper, S. J.; Biswas, S.; Howarth, M. Plug-and-display: Decoration of virus-like particles via isopeptide bonds for modular immunization. Sci. Rep. 2016, 6, 19234.

365

Liu, Z. D.; Zhou, H.; Wang, W. J.; Tan, W. J.; Fu, Y. X.; Zhu, M. Z. A novel method for synthetic vaccine construction based on protein assembly. Sci. Rep. 2014, 4, 7266.

366

Lee, C. D.; Yan, Y. P.; Liang, S. M.; Wang, T. F. Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli. J. Biomed. Sci. 2009, 16, 69.

367

Liew, M. W. O.; Rajendran, A.; Middelberg, A. P. J. Microbial production of virus-like particle vaccine protein at gram-per-litre levels. J. Biotechnol. 2010, 150, 224–231.

368

Sasnauskas, K.; Buzaite, O.; Vogel, F.; Jandrig, B.; Razanskas, R.; Staniulis, J.; Scherneck, S.; Krüger, D. H.; Ulrich, R. Yeast cells allow high-level expression and formation of polyomavirus-like particles. Biol. Chem. 1999, 380, 381–386.

369

Santi, L.; Batchelor, L.; Huang, Z.; Hjelm, B.; Kilbourne, J.; Arntzen, C. J.; Chen, Q.; Mason, H. S. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 2008, 26, 1846–1854.

370

Santi, L.; Huang, Z.; Mason, H. Virus-like particles production in green plants. Methods 2006, 40, 66–76.

371

Maranga, L.; Cruz, P. E.; Aunins, J. G.; Carrondo, M. J. Production of core and virus-like particles with baculovirus infected insect cells. Adv. Biochem. Eng. Biotechnol. 2002, 74, 183–206.

372

Hsieh, P. K.; Chang, S. C.; Huang, C. C.; Lee, T. T.; Hsiao, C. W.; Kou, Y. H.; Chen, I. Y.; Chang, C. K.; Huang, T. H.; Chang, M. F. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol. 2005, 79, 13848–13855.

373

Kost, T. A.; Condreay, J. P. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol. 2002, 20, 173–180.

374

Bundy, B. C.; Franciszkowicz, M. J.; Swartz, J. R. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol. Bioeng. 2008, 100, 28–37.

375

Shi, X. Z.; Jarvis, D. L. Protein N-glycosylation in the baculovirus-insect cell system. Curr. Drug Targets 2007, 8, 1116–1125.

376

Watanabe, Y.; Allen, J. D.; Wrapp, D.; McLellan, J. S.; Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020, 369, 330–333.

377

Margine, I.; Martinez-Gil, L.; Chou, Y. Y.; Krammer, F. Residual baculovirus in insect cell-derived influenza virus-like particle preparations enhances immunogenicity. PLoS One 2012, 7, e51559.

378

Khan, K. H. Gene expression in Mammalian cells and its applications. Adv. Pharm. Bull. 2013, 3, 257–263.

379

Chen, Q.; Lai, H. F. Plant-derived virus-like particles as vaccines. Hum. Vaccin. Immunother. 2013, 9, 26–49.

380

Kim, H. S.; Jeon, J. H.; Lee, K. J.; Ko, K. N-Glycosylation modification of plant-derived virus-like particles: An application in vaccines. BioMed Res. Int. 2014, 2014, 249519.

381

Roldão, A.; Mellado, M. C. M.; Castilho, L. R.; Carrondo, M. J.; Alves, P. M. Virus-like particles in vaccine development. Expert Rev. Vaccines 2010, 9, 1149–1176.

382

Hiatt, A.; Caffferkey, R.; Bowdish, K. Production of antibodies in transgenic plants. Nature 1989, 342, 76–78.

383

Goodin, M. M.; Zaitlin, D.; Naidu, R. A.; Lommel, S. A. Nicotiana benthamiana: Its history and future as a model for plant-pathogen interactions. Mol. Plant Microbe Interact. 2008, 21, 1015–1026.

384

Mason, H. S.; Lam, D. M.; Arntzen, C. J. Expression of hepatitis B surface antigen in transgenic plants. Proc. Natl. Acad. Sci. USA 1992, 89, 11745–11749.

385

Lacasse, P.; Denis, J.; Lapointe, R.; Leclerc, D.; Lamarre, A. Novel plant virus-based vaccine induces protective cytotoxic T-lymphocyte-mediated antiviral immunity through dendritic cell maturation. J. Virol. 2008, 82, 785–794.

386

Pillet, S.; Aubin, É.; Trépanier, S.; Bussière, D.; Dargis, M.; Poulin, J. F.; Yassine-Diab, B.; Ward, B. J.; Landry, N. A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clin. Immunol. 2016, 168, 72–87.

387

Shriver, L. P.; Plummer, E. M.; Thomas, D. M.; Ho, S.; Manchester, M. Localization of gadolinium-loaded CPMV to sites of inflammation during central nervous system autoimmunity. J. Mater. Chem. B 2013, 1, 5256–5263.

388

D'Aoust, M. A.; Lavoie, P. O.; Couture, M. M. J.; Trépanier, S.; Guay, J. M.; Dargis, M.; Mongrand, S.; Landry, N.; Ward, B. J.; Vézina, L. P. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol. J. 2008, 6, 930–940.

389

Lindsay, B. J.; Bonar, M. M.; Costas-Cancelas, I. N.; Hunt, K.; Makarkov, A. I.; Chierzi, S.; Krawczyk, C. M.; Landry, N.; Ward, B. J.; Rouiller, I. Morphological characterization of a plant-made virus-like particle vaccine bearing influenza virus hemagglutinins by electron microscopy. Vaccine 2018, 36, 2147–2154.

390

Gelvin, S. B. Agrobacterium-mediated plant transformation: The biology behind the "gene-jockeying" tool. Microbiol. Mol. Biol. Rev. 2003, 67, 16–37.

391

Zupan, J. R.; Zambryski, P. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol. 1995, 107, 1041–1047.

392

Morein, B.; Simons, K. Subunit vaccines against enveloped viruses: Virosomes, micelles and other protein complexes. Vaccine 1985, 3, 83–93.

393

Hansson, M.; Nygren, P. Å.; Ståhl, S. Design and production of recombinant subunit vaccines. Biotechnol. Appl. Biochem. 2000, 32, 95–107.

394
Donaldson, B.; Al-Barwani, F.; Young, V.; Scullion, S.; Ward, V.; Young, S. Virus-like particles, a versatile subunit vaccine platform. In Subunit Vaccine Delivery. Foged, C.; Rades, T.; Perrie, Y.; Hook, S., Eds.; Springer: New York, 2015; pp 159–180.https://doi.org/10.1007/978-1-4939-1417-3_9
DOI
395

Schiller, J. T.; Lowy, D. R. Raising expectations for subunit vaccine. J. Infect. Dis. 2015, 211, 1373–1375.

396

Trimaille, T.; Lacroix, C.; Verrier, B. Self-assembled amphiphilic copolymers as dual delivery system for immunotherapy. Eur. J. Pharm. Biopharm. 2019, 142, 232–239.

397

Trimaille, T.; Verrier, B. Micelle-based adjuvants for subunit vaccine delivery. Vaccines 2015, 3, 803–813.

398

Zaman, M.; Skwarczynski, M.; Malcolm, J. M.; Urbani, C. N.; Jia, Z. F.; Batzloff, M. R.; Good, M. F.; Monteiro, M. J.; Toth, I. Self-adjuvanting polyacrylic nanoparticulate delivery system for group A streptococcus (GAS) vaccine. Nanomedicine Nanotechnol. Biol. Med. 2011, 7, 168–173.

399

Silva, A. L.; Soema, P. C.; Slütter, B.; Ossendorp, F.; Jiskoot, W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum. Vaccin. Immunother. 2016, 12, 1056–1069.

400

Radošević, K.; Rodriguez, A.; Mintardjo, R.; Tax, D.; Bengtsson, K. L.; Thompson, C.; Zambon, M.; Weverling, G. J.; UytdeHaag, F.; Goudsmit, J. Antibody and T-cell responses to a virosomal adjuvanted H9N2 avian influenza vaccine: Impact of distinct additional adjuvants. Vaccine 2008, 26, 3640–3646.

401

Reimer, J. M.; Karlsson, K. H.; Lövgren-Bengtsson, K.; Magnusson, S. E.; Fuentes, A.; Stertman, L. Matrix-M™ adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS One 2012, 7, e41451.

402

Shinde, V.; Fries, L.; Wu, Y. K.; Agrawal, S.; Cho, I.; Thomas, D. N.; Spindler, M.; Lindner, E.; Hahn, T.; Plested, J. et al. Improved titers against influenza drift variants with a nanoparticle vaccine. N. Engl. J. Med. 2018, 378, 2346–2348.

403

Madhun, A. S.; Haaheim, L. R.; Nilsen, M. V.; Cox, R. J. Intramuscular Matrix-M-adjuvanted virosomal H5N1 vaccine induces high frequencies of multifunctional Th1 CD4+ cells and strong antibody responses in mice. Vaccine 2009, 27, 7367–7376.

404

Shinde, V.; Bhikha, S.; Hoosain, Z.; Archary, M.; Bhorat, Q.; Fairlie, L.; Lalloo, U.; Masilela, M. S. L.; Moodley, D.; Hanley, S. et al. Efficacy of NVX-CoV2373 Covid-19 vaccine against the B. 1.351 variant. N. Engl. J. Med. 2021, 384, 1899–1909.

405

Honda-Okubo, Y.; Barnard, D.; Ong, C. H.; Peng, B. H.; Tseng, C. T. K.; Petrovsky, N. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J. Virol. 2015, 89, 2995–3007.

406

McPherson, C.; Chubet, R.; Holtz, K.; Honda-Okubo, Y.; Barnard, D.; Cox, M.; Petrovsky, N. Development of a SARS coronavirus vaccine from recombinant spike protein plus delta inulin adjuvant. Methods Mol. Biol. 2016, 1403, 269–284.

407

Zhou, Z. M.; Post, P.; Chubet, R.; Holtz, K.; McPherson, C.; Petric, M.; Cox, M. A recombinant baculovirus-expressed S glycoprotein vaccine elicits high titers of SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. Vaccine 2006, 24, 3624–3631.

408

Kerekes, K.; Cooper, P. D.; Prechl, J.; Józsi, M.; Bajtay, Z.; Erdei, A. Adjuvant effect of γ-inulin is mediated by C3 fragments deposited on antigen-presenting cells. J. Leukoc. Biol. 2001, 69, 69–74.

409

Müller-Eberhard, H. J. Molecular organization and function of the complement system. Annu. Rev. Biochem. 1988, 57, 321–347.

410

Mai-Prochnow, A.; Hui, J. G. K.; Kjelleberg, S.; Rakonjac, J.; McDougald, D.; Rice, S. A. ‘Big things in small packages: The genetics of filamentous phage and effects on fitness of their host’. FEMS Microbiol. Rev. 2015, 39, 465–487.

411

Hajitou, A.; Rangel, R.; Trepel, M.; Soghomonyan, S.; Gelovani, J. G.; Alauddin, M. M.; Pasqualini, R.; Arap, W. Design and construction of targeted AAVP vectors for mammalian cell transduction. Nat. Protoc. 2007, 2, 523–531.

412

Namdee, K.; Khongkow, M.; Boonrungsiman, S.; Nittayasut, N.; Asavarut, P.; Temisak, S.; Saengkrit, N.; Puttipipatkhachorn, S.; Hajitou, A.; Ruxrungtham, K. et al. Thermoresponsive bacteriophage nanocarrier as a gene delivery vector targeted to the gastrointestinal Tract. Mol. Ther. Nucleic Acids 2018, 12, 33–44.

413

Goracci, M.; Pignochino, Y.; Marchiò, S. Phage display-based nanotechnology applications in cancer immunotherapy. Molecules 2020, 25, 843.

414

Parmiani, G.; Russo, V.; Maccalli, C.; Parolini, D.; Rizzo, N.; Maio, M. Peptide-based vaccines for cancer therapy. Hum. Vaccin. Immunother. 2014, 10, 3175–3178.

415

Coley, A. M.; Campanale, N. V.; Casey, J. L.; Hodder, A. N.; Crewther, P. E.; Anders, R. F.; Tilley, L. M.; Foley, M. Rapid and precise epitope mapping of monoclonal antibodies against Plasmodium falciparum AMA1 by combined phage display of fragments and random peptides. Protein Eng. Des. Sel. 2001, 14, 691–698.

416
Lozano, J. M.; Bermúdez, A.; Patarroyo, M. E. Peptide vaccines for malaria. In Handbook of Biologically Active Peptides. Kastin, A. J., Ed.; Academic Press: Burlington, 2006; pp 515–526.https://doi.org/10.1016/B978-012369442-3/50077-5
DOI
417

Frenkel, D.; Katz, O.; Solomon, B. Immunization against Alzheimer's β-amyloid plaques via EFRH phage administration. Proc. Natl. Acad. Sci. USA 2000, 97, 11455–11459.

418

Umscheid, C. A.; Margolis, D. J.; Grossman, C. E. Key concepts of clinical trials: A narrative review. Postgrad. Med. 2011, 123, 194–204.

419

Bao, L. L.; Deng, W.; Huang, B. Y.; Gao, H.; Liu, J. N.; Ren, L. L.; Wei, Q.; Yu, P.; Xu, Y. F.; Qi, F. F. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 2020, 583, 830–833.

420

Gu, H. J.; Chen, Q.; Yang, G.; He, L.; Fan, H.; Deng, Y. Q.; Wang, Y. X.; Teng, Y.; Zhao, Z. P.; Cui, Y. J. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 2020, 369, 1603–1607.

421

Chan, J. F. W.; Zhang, A. J.; Yuan, S. F.; Poon, V. K. M.; Chan, C. C. S.; Lee, A. C. Y.; Chan, W. M.; Fan, Z. M.; Tsoi, H. W.; Wen, L. et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in a golden Syrian hamster model: Implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 2020, 71, 2428–2446.

422

Kim, Y. I.; Kim, S. G.; Kim, S. M.; Kim, E. H.; Park, S. J.; Yu, K. M.; Chang, J. H.; Kim, E. J.; Lee, S.; Casel, M. A. B. et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 2020, 27, 704–709.e2.

423

Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T. M.; Lamers, M. M.; Okba, N. M. A.; van Vlissingen, M. F.; Rockx, B.; Haagmans, B. L.; Koopmans, M. P. G. et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat. Commun. 2020, 11, 3496.

424

Chandrashekar, A.; Liu, J. Y.; Martinot, A. J.; McMahan, K.; Mercado, N. B.; Peter, L.; Tostanoski, L. H.; Yu, J. Y.; Maliga, Z.; Nekorchuk, M. et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science 2020, 369, 812–817.

425

Ursino, M.; Zohar, S.; Lentz, F.; Alberti, C.; Friede, T.; Stallard, N.; Comets, E. Dose-finding methods for Phase I clinical trials using pharmacokinetics in small populations. Biom. J. 2017, 59, 804–825.

426
Roth, R. I. Human clinical safety assessment procedures. In Comprehensive Toxicology. McQueen, C. A., Ed.; Elsevier: Amsterdam, 2010; pp 173–181.https://doi.org/10.1016/B978-0-08-046884-6.00319-5
DOI
427

Buyse, M. Phase III design: Principles. Chin. Clin. Oncol. 2016, 5, 10.

428

Rai, S. N.; Qian, C.; Pan, J. M.; Seth, A.; Srivastava, D. K.; Bhatnagar, A. Statistical design of Phase II/III clinical trials for testing therapeutic interventions in COVID-19 patients. BMC Med. Res. Methodol. 2020, 20, 220.

429

Hodgson, S. H.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K. R. W.; Pollard, A. J. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect. Dis. 2021, 21, E26–E35.

430
Tregoning, J. S.; Flight, K. E.; Higham, S. L.; Wang, Z. Y.; Pierce, B. F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, DOI: 10.1038/s41577-021-00592-1.https://doi.org/10.1038/s41577-021-00592-1
DOI
431

Werbel, W. A.; Boyarsky, B. J.; Ou, M. T.; Massie, A. B.; Tobian, A. A. R.; Garonzik-Wang, J. M.; Segev, D. L. Safety and immunogenicity of a third dose of SARS-CoV-2 vaccine in solid organ transplant recipients: A case series. Ann. Intern. Med. 2021, L21–0282.

432

’t Hart, B. A.; Bogers, W. M.; Haanstra, K. G.; Verreck, F. A.; Kocken, C. H. The translational value of non-human primates in preclinical research on infection and immunopathology. Eur. J. Pharmacol. 2015, 759, 69–83.

433

Johansen, M. D.; Irving, A.; Montagutelli, X.; Tate, M. D.; Rudloff, T. I.; Nold, M. F.; Hansbro, N. G.; Kim, R. Y.; Donovan, C.; Liu, G. et al. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol. 2020, 13, 877–891.

434

Muñoz-Fontela, C.; Dowling, W. E.; Funnell, S. G. P.; Gsell, P. S.; Riveros-Balta, A. X.; Albrecht, R. A.; Andersen, H.; Baric, R. S.; Carroll, M. W.; Cavaleri, M. et al. Animal models for COVID-19. Nature 2020, 586, 509–515.

435

Dearlove, B.; Lewitus, E.; Bai, H. J.; Li, Y. F.; Reeves, D. B.; Joyce, M. G.; Scott, P. T.; Amare, M. F.; Vasan, S.; Michael, N. L. et al. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants. Proc. Natl. Acad. Sci. USA 2020, 117, 23652–23662.

436

Koyama, T.; Platt, D.; Parida, L. Variant analysis of SARS-CoV-2 genomes. Bull. World Health Organ. 2020, 98, 495–504.

437

Kis, Z.; Kontoravdi, C.; Dey, A. K.; Shattock, R.; Shah, N. Rapid development and deployment of high-volume vaccines for pandemic response. J. Adv. Manuf. Process. 2020, 2, e10060.

438

Bahamondez-Canas, T. F.; Cui, Z. R. Intranasal immunization with dry powder vaccines. Eur. J. Pharm. Biopharm. 2018, 122, 167–175.

439

Pissuwan, D.; Nose, K.; Kurihara, R.; Kaneko, K.; Tahara, Y.; Kamiya, N.; Goto, M.; Katayama, Y.; Niidome, T. A solid-in-oil dispersion of gold nanorods can enhance transdermal protein delivery and skin vaccination. Small 2011, 7, 215–220.

440

Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol. 2009, 7, 439–450.

441

McGrath, B. A.; Brenner, M. J.; Warrillow, S. J.; Pandian, V.; Arora, A.; Cameron, T. S.; Añon, J. M.; Hernández Martínez, G.; Truog, R. D.; Block, S. D. et al. Tracheostomy in the COVID-19 era: Global and multidisciplinary guidance. Lancet Respir. Med. 2020, 8, 717–725.

442

Apostolopoulos, V.; Thalhammer, T.; Tzakos, A. G.; Stojanovska, L. Targeting antigens to dendritic cell receptors for vaccine development. J. Drug Deliv. 2013, 2013, 869718.

443

Xia, S. L.; Duan, K.; Zhang, Y. T.; Zhao, D. Y.; Zhang, H. J.; Xie, Z. Q.; Li, X. G.; Peng, C.; Zhang, Y. B.; Zhang, W. et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: Interim analysis of 2 randomized clinical trials. JAMA 2020, 324, 951–960.

444

Isakova-Sivak, I.; Rudenko, L. A promising inactivated whole-virion SARS-CoV-2 vaccine. Lancet Infect. Dis. 2021, 21, 2–3.

445
Mohandas, S.; Yadav, P. D.; Shete, A.; Abraham, P.; Mohan, K.; Sapkal, G.; Mote, C.; Nyayanit, D.; Gupta, N.; Srini, V. K. et al. Immunogenicity and protective efficacy of BBV152: A whole virion inactivated SARS CoV-2 vaccine in the Syrian hamster model, 2020.https://doi.org/10.21203/rs.3.rs-76768/v1
DOI
446

Logunov, D. Y.; Dolzhikova, I. V.; Zubkova, O. V.; Tukhvatulin, A. I.; Shcheblyakov, D. V.; Dzharullaeva, A. S.; Grousova, D. M.; Erokhova, A. S.; Kovyrshina, A. V.; Botikov, A. G. et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020, 396, 887–897.

447

Folegatti, P. M.; Ewer, K. J.; Aley, P. K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E. A. et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478.

Publication history
Copyright
Acknowledgements

Publication history

Received: 24 June 2021
Revised: 19 August 2021
Accepted: 19 August 2021
Published: 09 October 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by OCSC Royal Thai Government-UCAS Scholarship under research collaboration between National Nanotechnology Center (NANOTEC), Thailand, and National Center for Nanoscience and Technology, China (No. P1852764). This work was also supported by the National Natural Science Foundation of China (NSFC) key projects (Nos. 31630027 and 32030060), NSFC international collaboration key project (No. 51861135103), and NSFC-German Research Foundation (DFG) project (No. 31761133013). The authors also appreciate the support by “the Beijing-Tianjin-Hebei Basic Research Cooperation Project” (No. 19JCZDJC64100), and National Key Research & Development Program of China (No. 2018YFE0117800). The authors are grateful for Prof. Dr. S. Seraphin at the Professional Authorship Center, Thailand National Science, and Technology Development Agency (NSTDA) for fruitful discussions on the manuscript preparation.

Return