Journal Home > Volume 15 , Issue 3

For new renewable clean energy, triboelectric nanogenerators (TENGs) have shown great potential in response to the world energy crisis. Nevertheless, the alternating-current signal generated by a TENG needs to be converted into a direct-current signal to be effective in applications. Therefore, a power management circuit, comprising a clamp rectifier circuit and a mechanical switch, is proposed for the conversion and produces a signal having a low ripple coefficient. The power management circuit adopts a clamp circuit as the rectifier circuit to increase the rectified voltage, and reduces the loss resulted from the components by reducing the use of discrete components; the electronic switch in the buck regulator circuit is replaced with a mechanical switch to reduce cost and complexity. In a series of experiments, this power management circuit displayed a stable output voltage with a ripple voltage of 0.07 V, crest factor of 1.01, and ripple coefficient of 2.2%. The TENG provides a feasible method to generate stable electric energy and to supply power to low-consumption electronic devices.


menu
Abstract
Full text
Outline
About this article

Triboelectric nanogenerator with mechanical switch and clamp circuit for low ripple output

Show Author's information Xin Yu1,2Zhenjie Wang1,2Da Zhao2Jianwei Ge1,2Tinghai Cheng2,3( )Zhong Lin Wang2,3,4( )
School of Electrical and Electronic Engineering, Changchun University of Technology, Jilin 130012, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
CUSTech Institute of Technology, Zhejiang 325024, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245, USA

Abstract

For new renewable clean energy, triboelectric nanogenerators (TENGs) have shown great potential in response to the world energy crisis. Nevertheless, the alternating-current signal generated by a TENG needs to be converted into a direct-current signal to be effective in applications. Therefore, a power management circuit, comprising a clamp rectifier circuit and a mechanical switch, is proposed for the conversion and produces a signal having a low ripple coefficient. The power management circuit adopts a clamp circuit as the rectifier circuit to increase the rectified voltage, and reduces the loss resulted from the components by reducing the use of discrete components; the electronic switch in the buck regulator circuit is replaced with a mechanical switch to reduce cost and complexity. In a series of experiments, this power management circuit displayed a stable output voltage with a ripple voltage of 0.07 V, crest factor of 1.01, and ripple coefficient of 2.2%. The TENG provides a feasible method to generate stable electric energy and to supply power to low-consumption electronic devices.

Keywords: energy harvesting, triboelectric nanogenerator, low ripple coefficient, clamp circuit, mechanical switch

References(32)

1

Wang, Z. L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672.

2

Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

3

Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.

4

Moreno-Brieva, F.; Merino, C. African international trade in the global value chain of lithium batteries. Mitig. Adapt. Strat. Glob. Change 2020, 25, 1031–1052.

5

Cheng, T. H.; Gao, Q.; Wang, Z. L. The current development and future outlook of triboelectric nanogenerators: A Survey of literature. Adv. Mater. Technol. 2019, 4, 1800588.

6

Ahmed, A.; Hassan, I.; Ibn-Mohammed, T.; Mostafa, H.; Reaney, I. M.; Koh, L. S. C.; Zu, J.; Wang, Z. L. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 2017, 10, 653–671.

7

Wang, Z. L. Triboelectric nanogenerator (TENG)-sparking an energy and sensor revolution. Adv. Energy Mater. 2020, 10, 2000137.

8

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

9

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

10

Wang, Z. L.; Zhu, G.; Yang, Y.; Wang, S. H.; Pan, C. F. Progress in nanogenerators for portable electronics. Mater. Today 2012, 15, 532–543.

11

Liu, W. L.; Wang, Z.; Hu, C. G. Advanced designs for output improvement of triboelectric nanogenerator system. Mater. Today 2021, 45, 93–119.

12

Han, K.; Luo, J. J.; Feng, Y. W.; Lai, Q. S.; Bai, Y.; Tang, W.; Wang, Z. L. Wind-driven radial-engine-shaped triboelectric nanogenerators for self-powered absorption and degradation of NOx. ACS Nano 2020, 14, 2751–2759.

13

Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023.

14

Zhong, Y. M.; Zhao, H. B.; Guo, Y. C.; Rui, P. S.; Shi, S. W.; Zhang, W.; Liao, Y. L.; Wang, P. H.; Wang, Z. L. An easily assembled electromagnetic-triboelectric hybrid nanogenerator driven by magnetic coupling for fluid energy harvesting and self-powered flow monitoring in a smart home/city. Adv. Mater. Technol. 2019, 4, 1900741.

15

Yin, M. F.; Yu, Y.; Wang, Y. Q.; Wang, Z.; Lu, X. H.; Cheng, T. H.; Wang, Z. L. Multi-plate structured triboelectric nanogenerator based on cycloidal displacement for harvesting hydroenergy. Extreme Mech. Lett. 2019, 33, 100576.

16

Quan, T.; Yang, Y. Fully enclosed hybrid electromagnetic-triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 2016, 9, 2226–2233.

17

Zhao, H. F.; Xiao, X.; Xu, P.; Zhao, T. C.; Song, L. G.; Pan, X. X.; Mi, J. C.; Xu, M. Y.; Wang, Z. L. Dual-tube helmholtz resonator-based triboelectric nanogenerator for highly efficient harvesting of acoustic energy. Adv. Energy Mater. 2019, 9, 1902824.

18

Jošt, M.; Lipovšek, B.; Glažar, B.; Al-Ashouri, A.; Brecl, K.; Matič, G.; Magomedov, A.; Getautis, V.; Topič, M.; Albrecht, S. Perovskite solar cells go outdoors: Field testing and temperature effects on energy yield. Adv. Energy Mater. 2020, 10, 2000454.

19

Lu, X. H.; Xu, Y. H.; Qiao, G. D.; Gao, Q.; Zhang, X. S.; Cheng, T. H.; Wang, Z. L. Triboelectric nanogenerator for entire stroke energy harvesting with bidirectional gear transmission. Nano Energy 2020, 72, 104726.

20

Ding, W. B.; Zhou, J. F.; Cheng, J.; Wang, Z. Z.; Guo, H. Y.; Wu, C. S.; Xu, S. X.; Wu, Z. Y.; Xie, X.; Wang, Z. L. TriboPump: A low-cost, hand-powered water disinfection system. Adv. Energy Mater. 2019, 9, 1901320.

21

Du, X. Y.; Li, N. W.; Liu, Y. B.; Wang, J. N.; Yuan, Z. Q.; Yin, Y. Y.; Cao, R.; Zhao, S. Y.; Wang, B.; Wang, Z. L. et al. Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy. Nano Res. 2018, 11, 2862–2871.

22

Graham, S. A.; Chandrarathna, S. C.; Patnam, H.; Manchi, P.; Lee, J. W.; Yu, J. S. Harsh environment-tolerant and robust triboelectric nanogenerators for mechanical-energy harvesting, sensing, and energy storage in a smart home. Nano Energy 2021, 80, 105547.

23

Kim, D.; Jin, I. K.; Choi, Y. K. Ferromagnetic nanoparticle-embedded hybrid nanogenerator for harvesting omnidirectional vibration energy. Nanoscale 2018, 10, 12276–12283.

24

Li, N. W.; Yin, Y. Y.; Du, X. Y.; Zhang, X. L.; Yuan, Z. Q.; Niu, H. D.; Cao, R.; Fan, W.; Zhang, Y.; Xu, W. H. et al. Triboelectric nanogenerator-enabled dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 802–810.

25

Niu, S. M.; Zhou, Y. S.; Wang, S. H.; Liu, Y.; Lin, L.; Bando, Y.; Wang, Z. L. Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system. Nano Energy 2014, 8, 150–156.

26

Ouyang, Q. L.; Feng, X. L.; Kuang, S. Y.; Panwar, N.; Song, P. Y.; Yang, C. B.; Yang, G.; Hemu, X.; Zhang, G.; Yoon, H. S. et al. Self-powered, on-demand transdermal drug delivery system driven by triboelectric nanogenerator. Nano Energy 2019, 62, 610–619.

27

Qin, H. F.; Gu, G. Q.; Shang, W. Y.; Luo, H. C.; Zhang, W. H.; Cui, P.; Zhang, B.; Guo, J. M.; Cheng, G.; Du, Z. L. A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator. Nano Energy 2020, 68, 104372.

28

Ren, Z. Y.; Zheng, Q.; Wang, H. B.; Guo, H.; Miao, L. M.; Wan, J.; Xu, C.; Cheng, S. Y.; Zhang, H. X. Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy 2020, 67, 104243.

29

Wang, F.; Tian, J. W.; Ding, Y. F.; Shi, Y. X.; Tao, X. L.; Wang, X. L.; Yang, Y.; Chen, X. Y.; Wang, Z. L. A universal managing circuit with stabilized voltage for maintaining safe operation of self-powered electronics system. iScience 2021, 24, 102502.

30

Xi, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.

31

Xi, F. B.; Pang, Y. K.; Liu, G. X.; Wang, S. W.; Li, W.; Zhang, C.; Wang, Z. L. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 2019, 61, 1–9.

32

Xia, K. Q.; Zhu, Z. Y.; Fu, J. M.; Li, Y. M.; Chi, Y.; Zhang, H. Z.; Du, C. L.; Xu, Z. W. A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring. Nano Energy 2019, 60, 61–71.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 July 2021
Revised: 12 August 2021
Accepted: 18 August 2021
Published: 18 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors are grateful for the supports received from the Scientific Research Project of Education Department of Jilin Province (No. JJKH20210736KJ), the National Key R&D Project from the Minister of Science and Technology (Nos. 2016YFA0202701 and 2016YFA0202704), and the Beijing Municipal Science and Technology Commission (No. Z171100002017017).

Return