Journal Home > Volume 15 , Issue 3

As an alternative energy, hydrogen can be converted into electrical energy via direct electrochemical conversion in fuel cells. One important drawback of full cells is the sluggish oxygen reduction reaction (ORR) promoted by the high-loading of platinum-group-metal (PGM) electrocatalysts. Fe-N-C family has been received extensive attention because of its low cost, long service life and high oxygen reduction reaction activity in recent years. In order to further enhance the ORR activity, the synthesis method, morphology regulation and catalytic mechanism of the active sites in Fe-N-C catalysts are investigated. This paper reviews the research progress of Fe-N-C from nanoparticles to single atoms. The structure-activity relationship and catalytic mechanism of the catalyst are studied and discussed, which provide a guidance for rational design of the catalyst, so as to promote the more reasonable design of Fe-N-C materials.


menu
Abstract
Full text
Outline
About this article

Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms

Show Author's information Mengru Sun1Changli Chen1Menghao Wu1Danni Zhou1Zhiyi Sun1Jianling Fan2( )Wenxing Chen1( )Yujing Li1( )
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Department of Physics and Engineering Technology, Guilin Normal College, Guilin 541199, China

Abstract

As an alternative energy, hydrogen can be converted into electrical energy via direct electrochemical conversion in fuel cells. One important drawback of full cells is the sluggish oxygen reduction reaction (ORR) promoted by the high-loading of platinum-group-metal (PGM) electrocatalysts. Fe-N-C family has been received extensive attention because of its low cost, long service life and high oxygen reduction reaction activity in recent years. In order to further enhance the ORR activity, the synthesis method, morphology regulation and catalytic mechanism of the active sites in Fe-N-C catalysts are investigated. This paper reviews the research progress of Fe-N-C from nanoparticles to single atoms. The structure-activity relationship and catalytic mechanism of the catalyst are studied and discussed, which provide a guidance for rational design of the catalyst, so as to promote the more reasonable design of Fe-N-C materials.

Keywords: synergistic effect, single atomic catalyst, nanoparticle catalyst, controlled structure regulation, local atomic regulation

References(225)

1

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

2

Talaie, E.; Bonnick, P.; Sun, X. Q.; Pang, Q.; Liang, X.; Nazar, L. F. Methods and protocols for electrochemical energy storage materials research. Chem. Mater. 2017, 29, 90–105.

3

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

4

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

5

Xiao, M. L.; Zhu, J. B.; Li, G. R.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P. X.; Xu, P.; Jiang, G. P. et al. Rücktitelbild: A single-atom iridium heterogeneous catalyst in oxygen reduction reaction (Angew. Chem. 28/2019). Angew. Chem., Int. Ed. 2019, 131, 9750.

6

Wang, Y. C.; Lai, Y. J.; Song, L.; Zhou, Z. Y.; Liu, J. G.; Wang, Q.; Yang, X. D.; Chen, C.; Shi, W.; Zheng, Y. P. et al. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem., Int. Ed. 2015, 127, 10045–10048.

7

Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

8

Escaño, M. C. S. First-principles calculations of the dissolution and coalescence properties of Pt nanoparticle ORR catalysts: The effect of nanoparticle shape. Nano Res. 2015, 8, 1689–1697.

9

Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

10

Ye, W.; Sun, Z. T.; Wang, C. M.; Ye, M. S.; Ren, C. H.; Long, R.; Zheng, X. S.; Zhu, J. F.; Wu, X. J.; Xiong, Y. J. Enhanced O2 reduction on atomically thin Pt-based nanoshells by integrating surface facet, interfacial electronic, and substrate stabilization effects. Nano Res. 2018, 11, 3313–3326.

11

Wang, H. W.; Luo, W. J.; Zhu, L. J.; Zhao, Z. P.; Bin, E.; Tu, W. Z.; Ke, X. X.; Sui, M. L.; Chen, C. F.; Chen, Q. et al. Synergistically enhanced oxygen reduction electrocatalysis by subsurface atoms in ternary PdCuNi alloy catalysts. Adv. Funct. Mater. 2018, 28, 1707219.

12

Zhao, Z. P.; Chen, C. L.; Liu, Z. Y.; Huang, J.; Wu, M. H.; Liu, H. T.; Li, Y. J.; Huang, Y. Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1808115.

13

Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.

14

Deng, X. H.; Tüysüz, H. Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges. ACS Catal. 2014, 4, 3701–3714.

15

Xue, Y. R.; Fang, J. J.; Wang, X. D.; Xu, Z. Y.; Zhang, Y. F.; Lv, Q. Q.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 2021, 31, 2101405.

16

Huang, J. Z.; Sheng, H. Y.; Ross, R. D.; Han, J. C.; Wang, X. J.; Song, B.; Jin, S. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 2021, 12, 3036.

17
Zahran, Z. N.; Mohamed, E. A.; Tsubonouchi, Y.; Ishizaki, M.; Togashi, T.; Kurihara, M.; Saito, K.; Yui, T.; Yagi, M. Electrocatalytic water splitting with unprecedentedly low overpotentials by nickel sulfide nanowires stuffed into carbon nitride scabbards. Energy Environ. Sci., in press, DOI: 10.1039/D1EE00509J.https://doi.org/10.1039/D1EE00509J
DOI
18
Li, S.; Chen, B. B.; Wang, Y.; Ye, M. Y.; van Aken, P. A.; Cheng, C.; Thomas, A. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater., in press, DOI: 10.1038/s41563-021-01006-2.https://doi.org/10.1038/s41563-021-01006-2
DOI
19

Bahadori, S. R.; Hart, R.; Hao, Y. W. Synthesis of cobalt, palladium, and rhenium nanoparticles. Tungsten 2020, 2, 261–288.

20

Aftab, U.; Tahira, A.; Mazzaro, R.; Morandi, V.; Abro, M. I.; Baloch, M. M.; Syed, J. A.; Nafady, A.; Ibupoto, Z. H. Facile NiCo2S4/C nanocomposite: An efficient material for water oxidation. Tungsten 2020, 2, 403–410.

21

Karakaya, C.; Solati, N.; Savacı, U.; Keleş, E.; Turan, S.; Çelebi, S.; Kaya, S. Mesoporous thin-film NiS2 as an idealized pre-electrocatalyst for a hydrogen evolution reaction. ACS Catal. 2020, 10, 15114–15122.

22

Zhou, Y. Q.; Zhang, L. F.; Suo, H. L.; Hua, W. B.; Indris, S.; Lei, Y. J.; Lai, W. H.; Wang, Y. X.; Hu, Z. P.; Liu, H. K. et al. Atomic cobalt vacancy-cluster enabling optimized electronic structure for efficient water splitting. Adv. Funct. Mater. 2021, 31, 2101797.

23

Li, Y. K.; Zhang, G.; Huang, H.; Lu, W. T.; Cao, F. F.; Shao, Z. G. Ni17W3-W interconnected hybrid prepared by atmosphere-and thermal-induced phase separation for efficient electrocatalysis of alkaline hydrogen evolution. Small 2020, 16, 2005184.

24

Lin, F.; Dong, Z. H.; Yao, Y. H.; Yang, L.; Fang, F.; Jiao, L. F. Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution. Adv. Energy Mater. 2020, 10, 2002176.

25

Zhang, G. W.; Wang, B.; Li, L.; Yang, S. C. Phosphorus and yttrium codoped Co(OH)F nanoarray as highly efficient and bifunctional electrocatalysts for overall water splitting. Small 2019, 15, 1904105.

26

Zhang, T. Y.; Han, X.; Yang, H. B.; Han, A. J.; Hu, E. Y.; Li, Y. P.; Yang, X. Q.; Wang, L.; Liu, J. F.; Liu, B. Atomically dispersed Nickel(I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 12055–12061.

27

Kim, C.; Cho, K. M.; Park, K.; Kim, J. Y.; Yun, G. T.; Toma, F. M.; Gereige, I.; Jung, H. T. Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Adv. Funct. Mater. 2021, 31, 2102142.

28

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

29

Zhang, J. Q.; Sun, B.; Zhao, Y. F.; Tkacheva, A.; Liu, Z. J.; Yan, K.; Guo, X.; McDonagh, A. M.; Shanmukaraj, D.; Wang, C. Y. et al. A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nat. Commun. 2019, 10, 602.

30

Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

31

Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

32

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

33

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

34

Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J. P.; Wu, G.; Chung, H. T.; Johnston, C. M.; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells. Energy Environ. Sci. 2011, 4, 114–130.

35

Armel, V.; Hindocha, S.; Salles, F.; Bennett, S.; Jones, D.; Jaouen, F. Structural descriptors of zeolitic-imidazolate frameworks are keys to the activity of Fe-N-C catalysts. J. Am. Chem. Soc. 2017, 139, 453–464.

36

Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Luo, D.; Liu, G. H.; Li, J. D.; Zhang, Z.; Hu, Y. F.; Chen, Z. W. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911.

37

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

38

Sun, J. Q.; Lowe, S. E.; Zhang, L. J.; Wang, Y. Z.; Pang, K. L.; Wang, Y.; Zhong, Y. L.; Liu, P. R.; Zhao, K.; Tang, Z. Y. et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 16511–16515.

39

Wang, B. W.; Wang, X. X.; Zou, J. X.; Yan, Y. C.; Xie, S. H.; Hu, G. Z.; Li, Y. G.; Dong, A. G. Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction. Nano Lett. 2017, 17, 2003–2009.

40

Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.

41

Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts. Chem. Rev. 2018, 118, 2340–2391.

42

Masa, J.; Xia, W.; Muhler, M.; Schuhmann, W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 10102–10120.

43

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

44

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

45

Li, F.; Han, G. F.; Noh, H. J.; Kim, S. J.; Lu, Y. L.; Jeong, H. Y.; Fu, Z. P.; Baek, J. B. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 2018, 11, 2263–2269.

46

Ling, T.; Zhang, T.; Ge, B. H.; Han, L. L.; Zheng, L. R.; Lin, F.; Xu, Z. R.; Hu, W. B.; Du, X. W.; Davey, K. et al. Electrocatalysis: Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction (Adv. Mater. 16/2019). Adv. Mater. 2019, 31, 1970113.

47

Zhang, J.; Chen, G. B.; Müllen, K.; Feng, X. L. Carbon-rich nanomaterials: Fascinating hydrogen and oxygen electrocatalysts. Adv. Mater. 2018, 30, 1800528.

48

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

49

Cai, H. Z.; Chen, B. B.; Zhang, X.; Deng, Y. C.; Xiao, D. Q.; Ma, D.; Shi, C. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 2021, 14, 122–130.

50

Tu, W. Z.; Luo, W. J.; Chen, C. L.; Chen, K.; Zhu, E. B.; Zhao, Z. P.; Wang, Z. L.; Hu, T.; Zai, H. C.; Ke, X. X. et al. Tungsten as “adhesive” in Pt2CuW0.25 ternary alloy for highly durable oxygen reduction electrocatalysis. Adv. Funct. Mater. 2020, 30, 1908230.

51

Chen, C. L.; Dong, Y. Y.; Ma, J.; Zheng, L.; Zhao, Y. Z.; Chen, W. X.; Li, Y. J. Bottom-up pore-generation strategy modulated active nitrogen species for oxygen reduction reaction. Mater. Chem. Front. 2021, 5, 2684–2693.

52

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

53

Sa, Y. J.; Seo, D. J.; Woo, J.; Lim, J. T.; Cheon, J. Y.; Yang, S. Y.; Lee, J. M.; Kang, D.; Shin, T. J.; Shin, H. S. et al. A general approach to preferential formation of active Fe-Nx sites in Fe-N/C electrocatalysts for efficient oxygen reduction reaction. J. Am. Chem. Soc. 2016, 138, 15046–15056.

54

Shen, M. X.; Wei, C. T.; Ai, K. L.; Lu, L. H. Transition metal-nitrogen-carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Res. 2017, 10, 1449–1470.

55

Kuang, M.; Wang, Q. H.; Han, P.; Zheng, G. F. Cu, Co-Embedded N-Enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. 2017, 7, 1700193.

56

Pegis, M. L.; Martin, D. J.; Wise, C. F.; Brezny, A. C.; Johnson, S. I.; Johnson, L. E.; Kumar, N.; Raugei, S.; Mayer, J. M. Mechanism of catalytic O2 reduction by iron tetraphenylporphyrin. J. Am. Chem. Soc. 2019, 141, 8315–8326.

57

Li, J. K.; Jiao, L.; Wegener, E.; Richard, L. L.; Liu, E. S.; Zitolo, A.; Sougrati, M. T.; Mukerjee, S.; Zhao, Z. P.; Huang, Y. et al. Evolution pathway from iron compounds to Fe1(II)-N4 sites through gas-phase iron during pyrolysis. J. Am. Chem. Soc. 2020, 142, 1417–1423.

58

Lin, Q. P.; Bu, X. H.; Kong, A. G.; Mao, C. Y.; Zhao, X.; Bu, F.; Feng, P. Y. New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. J. Am. Chem. Soc. 2015, 137, 2235–2238.

59

Zhang, H. G.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548–2558.

60

Ye, W.; Chen, S. M.; Lin, Y.; Yang, L.; Chen, S. J.; Zheng, X. S.; Qi, Z. M.; Wang, C. M.; Long, R.; Chen, M. et al. Precisely tuning the number of fe atoms in clusters on n-doped carbon toward acidic oxygen reduction reaction. Chem 2019, 5, 2865–2878.

61

Zheng, L.; Dong, Y. Y.; Chi, B.; Cui, Z. M.; Deng, Y. J.; Shi, X. D.; Du, L.; Liao, S. J. UIO-66-NH2-derived mesoporous carbon catalyst co-doped with Fe/N/S as highly efficient cathode catalyst for PEMFCs. Small 2019, 15, 1803520.

62

Chen, Z. R.; Liu, R. L.; Liu, S. H.; Huang, J. L.; Chen, L. Y.; Nadimicherla, R.; Wu, D. C.; Fu, R. W. FeS/FeNC decorated N, S-co-doped porous carbon for enhanced ORR activity in alkaline media. Chem. Commun. 2020, 56, 12921–12924.

63

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

64

Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213.

65

Savy, M.; Andro, P.; Bernard, C.; Magner, G. Etude de la reduction de l'oxygene sur les phtalocyanines monomeres et polymeres—I. Principes fondamentaux, choix de l'ion central. Electrochim. Acta 1973, 18, 191–197.

66

Gupta, S.; Tryk, D.; Bae, I.; Aldred, W.; Yeager, E. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 1989, 19, 19–27.

67

Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416.

68

Varnell, J. A.; Tse, E. C. M.; Schulz, C. E.; Fister, T. T.; Haasch, R. T.; Timoshenko, J.; Frenkel, A. I.; Gewirth, A. A. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat. Commun. 2016, 7, 12582.

69

Lin, Q. P.; Bu, X. H.; Kong, A. G.; Mao, C. Y.; Bu, F.; Feng, P. Y. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts. Adv. Mater. 2015, 27, 3431–3436.

70

Wang, H.; Yin, F. X.; Liu, N.; Kou, R. H.; He, X. B.; Sun, C. J.; Chen, B. H.; Liu, D. J.; Yin, H. Q. Engineering Fe-Fe3C@Fe-N-C active sites and hybrid structures from dual metal-organic frameworks for oxygen reduction reaction in H2-O2 fuel cell and Li-O2 battery. Adv. Funct. Mater. 2019, 29, 1901531.

71

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

72

Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefèvre, M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Mukerjee, S. et al. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEMfuel cells. Phys. Chem. Chem. Phys. 2012, 14, 11673–11688.

73

von Deak, D.; Singh, D.; Biddinger, E. J.; King, J. C.; Bayram, B.; Miller, J. T.; Ozkan, U. S. Investigation of sulfur poisoning of CNx oxygen reduction catalysts for PEM fuel cells. J. Catal. 2012, 285, 145–151.

74

Birry, L.; Zagal, J. H.; Dodelet, J. P. Does CO poison Fe-based catalysts for ORR? Electrochem. Commun. 2010, 12, 628–631.

75

Collman, J. P.; Brauman, J. I.; Halbert, T. R.; Suslick, K. S. Nature of O2 and CO binding to metalloporphyrins and heme proteins. Proc. Natl. Acad. Sci. USA 1976, 73, 3333–3337.

76

Choi, C. H.; Choi, W. S.; Kasian, O.; Mechler, A. K.; Sougrati, M. T.; Brüller, S.; Strickland, K.; Jia, Q. Y.; Mukerjee, S.; Mayrhofer, K. J. J. et al. Unraveling the nature of sites active toward hydrogen peroxide reduction in Fe-N-C catalysts. Angew. Chem., Int. Ed. 2017, 56, 8809–8812.

77

Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.

78

Jin, H. H.; Zhou, H.; Ji, P. X.; Zhang, C. T.; Luo, J. H.; Zeng, W. H.; Hu, C. X.; He, D. P.; Mu, S. C. ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res. 2020, 13, 818–823.

79

Yang, Z. K.; Zhao, Z. W.; Liang, K.; Zhou, X.; Shen, C. C.; Liu, Y. N.; Wang, X.; Xu, A. W. Synthesis of nanoporous structured iron carbide/Fe-N-carbon composites for efficient oxygen reduction reaction in Zn-air batteries. J. Mater. Chem. A 2016, 4, 19037–19044.

80

Liu, Q. T.; Liu, X. F.; Zheng, L. R.; Shui, J. L. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2018, 57, 1204–1208.

81

She, Y. Y.; Liu, J.; Wang, H. K.; Li, L.; Zhou, J. S.; Leung, M. K. H. Bubble-like Fe-encapsulated N, S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn-air batteries. Nano Res. 2020, 13, 2175–2182.

82

Liu, H. S.; Shi, Z.; Zhang, J. L.; Zhang, L.; Zhang, J. J. Ultrasonic spray pyrolyzed iron-polypyrrole mesoporous spheres for fuel celloxygen reduction electrocatalysts. J. Mater. Chem. 2009, 19, 468–470.

83

Qin, Q.; Jang, H.; Li, P.; Yuan, B.; Liu, X. E.; Cho, J. A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries. Adv. Energy Mater. 2019, 9, 1803312.

84

Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651–1657.

85

Ao, X.; Zhang, W.; Li, Z. S.; Lv, L.; Ruan, Y. J.; Wu, H. H.; Chiang, W. H.; Wang, C. D. et al. Unraveling the high-activity nature of Fe-N-C electrocatalysts for the oxygen reduction reaction: The extraordinary synergy between Fe-N4 and Fe4N. J. Mater. Chem. A 2019, 7, 11792–11801.

86

Wang, B.; Ye, Y. Z.; Xu, L.; Quan, Y.; Wei, W. X.; Zhu, W. S.; Li, H. M.; Xia, J. X. Space-confined yolk-shell construction of Fe3O4 nanoparticles inside N-doped hollow mesoporous carbon spheres as bifunctional electrocatalysts for long-term rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 2005834.

87

Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Yu, X.; Wang, C.; Ma, T. L. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2019, 12, 2774–2780.

88

Cui, X.; Gao, L. K.; Lei, S.; Liang, S.; Zhang, J. W.; Sewell, C. D.; Xue, W. D.; Liu, Q.; Lin, Z. Q.; Yang, Y. K. Simultaneously crafting single-atomic Fe sites and graphitic layer-wrapped Fe3C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction. Adv. Funct. Mater. 2020, 31, 2009197.

89

Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

90

Qu, K. G.; Zheng, Y.; Dai, S.; Qiao, S. Z. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 2016, 19, 373–381.

91

Ye, T. N.; Lv, L. B.; Li, X. H.; Xu, M.; Chen, J. S. Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. Angew. Chem., Int. Ed. 2014, 53, 6905–6909.

92

Lv, L. B.; Ye, T. N.; Gong, L. H.; Wang, K. X.; Su, J.; Li, X. H.; Chen, J. S. Anchoring cobalt nanocrystals through the plane of graphene: Highly integrated electrocatalyst for oxygen reduction reaction. Chem. Mater. 2015, 27, 544–549.

93

Wu, Z. Y.; Xu, X. X.; Hu, B. C.; Liang, H. W.; Lin, Y.; Chen, L. F.; Yu, S. H. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem. 2015, 127, 8297–8301.

94

Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

95

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.

96

El–Sawy, A. M.; Mosa, I. M.; Su, D.; Guild, C. J.; Khalid, S.; Joesten, R.; Rusling, J. F.; Suib, S. L. Controlling the active sites of sulfur-doped carbon nanotube-graphene nanolobes for highly efficient oxygen evolution and reduction catalysis. Adv. Energy Mater. 2016, 6, 1501966.

97

Han, Q.; Wang, B.; Gao, J.; Cheng, Z. H.; Zhao, Y.; Zhang, Z. P.; Qu, L. T. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016, 10, 2745–2751.

98

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

99

Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/Carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.

100

Hu, E. L.; Yu, X. Y.; Chen, F.; Wu, Y. D.; Hu, Y.; Lou, X. W. Graphene layers-wrapped Fe/Fe5C2 nanoparticles supported on N-doped graphene nanosheets for highly efficient oxygen reduction. Adv. Energy Mater. 2018, 8, 1702476.

101

Liu, Y. Y.; Wang, H. T.; Lin, D. C.; Zhao, J.; Liu, C.; Xie, J.; Cui, Y. A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Res. 2017, 10, 1213–1222.

102

Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.

103

Vij, V.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction. Sci. Rep. 2016, 6, 20132.

104

Bao, X. B.; Gong, Y. T.; Deng, J.; Wang, S. P.; Wang, Y. Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions. Nano Res. 2017, 10, 1258–1267.

105

Fan, X. J.; Peng, Z. W.; Ye, R. Q.; Zhou, H. Q.; Guo, X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 2015, 9, 7407–7418.

106

Hou, Y.; Huang, T. Z.; Wen, Z. H.; Mao, S.; Cui, S. M.; Chen, J. H. Metal-organic framework-derived nitrogen-doped core-shell-structured porous Fe/Fe3C@C nanoboxes supported on graphene sheets for efficient oxygen reduction reactions. Adv. Energy Mater. 2014, 4, 1400337.

107

Schnepp, Z. Biopolymers as a flexible resource for nanochemistry. Angew. Chem., Int. Ed. 2013, 52, 1096–1108.

108

Antonietti, M.; Fechler, N.; Fellinger, T. P. Carbon aerogels and monoliths: Control of porosity and nanoarchitecture via sol-gel routes. Chem. Mater. 2014, 26, 196–210.

109

Yue, H. R.; Zhao, Y. J.; Zhao, S.; Wang, B.; Ma, X. B.; Gong, J. L. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions. Nat. Commun. 2013, 4, 2339.

110

Wang, Z. L.; Xu, D.; Zhong, H. X.; Wang, J.; Meng, F. L.; Zhang, X. B. Gelatin-derived sustainable carbon-based functional materials for energy conversion and storage with controllability of structure and component. Sci. Adv. 2015, 1, e1400035.

111

Wei, J.; Liang, Y.; Hu, Y. X.; Kong, B.; Simon, G. P.; Zhang, J.; Jiang, S. P.; Wang, H. T. A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 1355–1359.

112

Li, Y.; Huang, J. H.; Hu, X.; Bi, L. L.; Cai, P. W.; Jia, J. C.; Chai, G. L.; Wei, S. Q.; Dai, L. M.; Wen, Z. H. Fe vacancies induced surface FeO6 in nanoarchitectures of N-doped graphene protected β-FeOOH: Effective active sites for pH-universal electrocatalytic oxygen reduction. Adv. Funct. Mater. 2018, 28, 1803330.

113

Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.

114

Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Niu, H. J.; Jones, J. T. A.; Khimyak, Y. Z.; Cooper, A. I. Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. J. Am. Chem. Soc. 2008, 130, 7710–7720.

115

Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012–8031.

116

Kim, S. J.; Mahmood, J.; Kim, C.; Han, G. F.; Kim, S. W.; Jung, S. M.; Zhu, G. M.; De Yoreo, J. J.; Kim, G.; Baek, J. B. Defect-free encapsulation of Fe0 in 2D fused organic networks as a durable oxygen reduction electrocatalyst. J. Am. Chem. Soc. 2018, 140, 1737–1742.

117

Jiang, L. L.; Duan, J. J.; Zhu, J. W.; Chen, S.; Antonietti, M. Iron-cluster-directed synthesis of 2D/2D Fe-N-C/MXene superlattice-like heterostructure with enhanced oxygen reduction electrocatalysis. ACS Nano 2020, 14, 2436–2444.

118

Qiao, Y. Y.; Yuan, P. F.; Hu, Y. F.; Zhang, J. N.; Mu, S. C.; Zhou, J. H.; Li, H.; Xia, H. C.; He, J.; Xu, Q. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 2018, 30, 1804504.

119

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

120

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

121

Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

122

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

123

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

124

Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

125

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

126

Asakura, K.; Nagahiro, H.; Ichikuni, N.; Iwasawa, Y. Structure and catalytic combustion activity of atomically dispersed Pt species at MgO surface. Appl. Catal. A:Gen. 1999, 188, 313–324.

127

Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; Li, J. K.; Jia, Q. Y.; Stamatin, S.; Harrington, G. F.; Lyth, S. M.; Krtil, P.; Mukerjee, S. et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 2017, 8, 957.

128

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

129

Han, Y. H.; Wang, Y. G.; Chen, W. X.; Xu, R. R.; Zheng, L. R.; Zhang, J.; Luo, J.; Shen, R. A.; Zhu, Y. Q.; Cheong, W. C. et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: Superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2017, 139, 17269–17272.

130

Deng, D. H.; Chen, X. Q.; Yu, L.; Wu, X.; Liu, Q. F.; Liu, Y.; Yang, H. X.; Tian, H. F.; Hu, Y. F.; Du, P. P. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.

131

Deng, Y. J.; Chi, B.; Li, J.; Wang, G. H.; Zheng, L.; Shi, X. D.; Cui, Z. M.; Du, L.; Liao, S. J.; Zang, K. et al. Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells. Adv. Energy Mater. 2019, 9, 1802856.

132

Ahn, S. H.; Yu, X. W.; Manthiram, A. "Wiring" Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv. Mater. 2017, 29, 1606534.

133

Lin, X.; Peng, P.; Guo, J. N.; Xie, L. H.; Liu, Y. J.; Xiang, Z. H. A new steric tetra-imidazole for facile synthesis of high loading atomically dispersed FeN4 electrocatalysts. Nano Energy 2021, 80, 105533.

134

Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 130, 8661–8665.

135

Zhou, H. C. J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

136

Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y. F.; Liu, J.; Shen, F. C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466.

137

Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688–2694.

138

Al–Zoubi, T.; Zhou, Y.; Yin, X.; Janicek, B.; Sun, C. J.; Schulz, C. E.; Zhang, X. H.; Gewirth, A. A.; Huang, P.; Zelenay, P. et al. Preparation of nonprecious metal electrocatalysts for the reduction of oxygen using a low-temperature sacrificial metal. J. Am. Chem. Soc. 2020, 142, 5477–5481.

139

Wang, J. P.; Han, G. K.; Wang, L. G.; Du, L.; Chen, G. Y.; Gao, Y. Z.; Ma, Y. L.; Du, C. Y.; Cheng, X. Q.; Zuo, P. J. et al. ZIF-8 with ferrocene encapsulated: A promising precursor to single-atom fe embedded nitrogen-doped carbon as highly efficient catalyst for oxygen electroreduction. Small 2018, 14, 1704282.

140

Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

141

Luo, E. G.; Wang, C.; Li, Y.; Wang, X.; Gong, L. Y.; Zhao, T.; Jin, Z.; Ge, J. J.; Liu, C. P.; Xing, W. Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors. Nano Res. 2020, 13, 2420–2426.

142

Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 Sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 131, 19147–19156.

143

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

144

Han, J. X.; Meng, X. Y.; Lu, L.; Bian, J. J.; Li, Z. P.; Sun, C. W. Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 2019, 29, 1808872.

145

Hou, C. C.; Zou, L. L.; Sun, L. M.; Zhang, K. X.; Liu, Z.; Li, Y. W.; Li, C. X.; Zou, R. Q.; Yu, J. H.; Xu, Q. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 132, 7454–7459.

146

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. G.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 129, 7041–7045.

147

Ferrero, G. A.; Preuss, K.; Marinovic, A.; Jorge, A. B.; Mansor, N.; Brett, D. J. L.; Fuertes, A. B.; Sevilla, M.; Titirici, M. M. Fe-N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions. ACS Nano 2016, 10, 5922–5932.

148

Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.

149

Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.

150

Meng, F. L.; Wang, Z. L.; Zhong, H. X.; Wang, J.; Yan, J. M.; Zhang, X. B. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv. Mater. 2016, 28, 7948–7955.

151

Huang, Z.; Pan, H. Y.; Yang, W. J.; Zhou, H. H.; Gao, N.; Fu, C. P.; Li, S. C.; Li, H. X.; Kuang, Y. F. In situ self-template synthesis of Fe-N-doped double-shelled hollow carbon microspheres for oxygen reduction reaction. ACS Nano 2018, 12, 208–216.

152

Zhang, X. Y.; Zhang, S.; Yang, Y.; Wang, L. G.; Mu, Z. J.; Zhu, H. S.; Zhu, X. Q.; Xing, H. H.; Xia, H. Y.; Huang, B. L. et al. A general method for transition metal single atoms anchored on honeycomb-like nitrogen-doped carbon nanosheets. Adv. Mater. 2020, 32, 1906905.

153

Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEMfuelcells. Energy Environ. Sci. 2011, 4, 3167–3192.

154

Qu, Y. T.; Wang, L. G.; Li, Z. J.; Li, P.; Zhang, Q. H.; Lin, Y.; Zhou, F. Y.; Wang, H. J.; Yang, Z. K.; Hu, Y. D. et al. Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 2019, 31, 1904496.

155

Ding, R.; Liu, Y. D.; Rui, Z. Y.; Li, J.; Liu, J. G.; Zou, Z. G. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526.

156

Peng, P.; Shi, L.; Huo, F.; Mi, C. X.; Wu, X. H.; Zhang, S. J.; Xiang, Z. H. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 2019, 5, eaaw2322.

157

Li, W. M.; Yu, A. P.; Higgins, D. C.; Llanos, B. G.; Chen, Z. W. Biologically inspired highly durable iron phthalocyanine catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Am. Chem. Soc. 2010, 132, 17056–17058.

158

Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Kim, M. G.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.

159

Wang, X. X.; Wang, B.; Zhong, J.; Zhao, F. P.; Han, N.; Huang, W. J.; Zeng, M.; Fan, J.; Li, Y. G. Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Res. 2016, 9, 1497–1506.

160

Wan, W. C.; Triana, C. A.; Lan, J. G.; Li, J. G.; Allen, C. S.; Zhao, Y. G.; Iannuzzi, M.; Patzke, G. R. Bifunctional single atom electrocatalysts: Coordination-performance correlations and reaction pathways. ACS Nano 2020, 14, 13279–13293.

161

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

162

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

163

Meng, F. L.; Zhong, H. X.; Yan, J. M.; Zhang, X. B. Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn-air batteries. Nano Res. 2017, 10, 4436–4447.

164

Gong, L. Y.; Zhang, H.; Wang, Y.; Luo, E. G.; Li, K.; Gao, L. Q.; Wang, Y. M.; Wu, Z. J.; Jin, Z.; Ge, J. J. et al. Bridge bonded oxygen ligands between approximated FeN4 sites confer catalysts with high ORR performance. Angew. Chem., Int. Ed. 2020, 132, 14027–14032.

165

Miao, Z. P.; Wang, X. M.; Tsai, M. C.; Jin, Q. Q.; Liang, J. S.; Ma, F.; Wang, T. Y.; Zheng, S. J.; Hwang, B. J.; Huang, Y. H. et al. Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy. Adv. Energy Mater. 2018, 8, 1801226.

166

Yasuda, S.; Furuya, A.; Uchibori, Y.; Kim, J.; Murakoshi, K. Iron-nitrogen-doped vertically aligned carbon nanotube electrocatalyst for the oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 738–744.

167

Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

168

Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

169

Yang, X.; Xia, D. S.; Kang, Y. Q.; Du, H. D.; Kang, F. Y.; Gan, L.; Li, J. Unveiling the Axial hydroxyl ligand on Fe-N4-C electrocatalysts and its impact on the pH-dependent oxygen reduction activities and poisoning kinetics. Adv. Sci. 2020, 7, 2000176.

170

Wang, Y.; Tang, Y. J.; Zhou, K. Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 14115–14119.

171

Holby, E. F.; Taylor, C. D. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands. Sci. Rep. 2015, 5, 9286.

172

Jia, Q. Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P. et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496–12505.

173

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

174

Holby, E. F.; Wang, G. F.; Zelenay, P. Acid stability and demetalation of PGM-free ORR electrocatalyst structures from density functional theory: A model for “single-atom catalyst” dissolution. ACS Catal. 2020, 10, 14527–14539.

175

Han, A. J.; Chen, W. X.; Zhang, S. L.; Zhang, M. L.; Han, Y. H.; Zhang, J.; Ji, S. F.; Zheng, L. R.; Wang, Y.; Gu, L. et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 2018, 30, 1706508.

176

Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

177

Wang, X.; Jia, Y.; Mao, X.; Liu, D. B.; He, W. X.; Li, J.; Liu, J. G.; Yan, X. C.; Chen, J.; Song, L. et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 2020, 32, 2000966.

178

Xiao, M. L.; Xing, Z. H.; Jin, Z.; Liu, C. P.; Ge, J. J.; Zhu, J. B.; Wang, Y.; Zhao, X.; Chen, Z. W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 2020, 32, 2004900.

179

Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.

180

Su, P. P.; Huang, W. J.; Zhang, J. W.; Guharoy, U.; Du, Q. G.; Sun, Q.; Jiang, Q. K.; Cheng, Y.; Yang, J.; Zhang, X. L. et al. Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction. Nano Res. 2021, 14, 1069–1077.

181

Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. G. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

182

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. G.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

183

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

184

Mun, Y. D.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile strategy for tuning ORR Activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254–6262.

185

Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 129, 13988–13992.

186

Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Tang, H. D.; Mamat, X.; Wagberg, T.; Hu, G. Z.; Guo, S. J. Atomically FeN2 moieties dispersed on mesoporous carbon: A new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy 2017, 35, 9–16.

187

Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

188

Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

189

Li, F.; Han, G. F.; Bu, Y. F.; Noh, H. J.; Jeon, J. P.; Shin, T. J.; Kim, S. J.; Wu, Y.; Jeong, H. Y.; Fu, Z. P. et al. Revealing isolated M-N3C1 active sites for efficient collaborative oxygen reduction catalysis. Angew. Chem., Int. Ed. 2020, 59, 23678–23683.

190

Li, Y. C.; Liu, X. F.; Zheng, L. R.; Shang, J. X.; Wan, X.; Hu, R. M.; Guo, X.; Hong, S.; Shui, J. L. Preparation of Fe-N-C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J. Mater. Chem. A 2019, 7, 26147–26153.

191

Lin, Y. C.; Liu, P. Y.; Velasco, E.; Yao, G.; Tian, Z. Q.; Zhang, L. J.; Chen, L. Fabricating single-atom catalysts from chelating metal in open frameworks. Adv. Mater. 2019, 31, 1808193.

192

Singh, K. P.; Bae, E. J.; Yu, J. S. Fe-P: A new class of electroactive catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 3165–3168.

193

Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.

194

Li, X. C.; Yang, X. X.; Liu, L. T.; Zhao, H.; Li, Y. W.; Zhu, H.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N.; Tan, Q. et al. Chemical vapor deposition for N/S-doped single fe site catalysts for the oxygen reduction in direct methanol fuel cells. ACS Catal. 2021, 7450–7459.

195

Zhu, X. F.; Tan, X.; Wu, K. H.; Chiang, C. L.; Lin, Y. C.; Lin, Y. G.; Wang, D. W.; Smith, S.; Lu, X. Y.; Amal, R. N, P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 14732–14742.

196

Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

197

Jin, H. H.; Kou, Z. K.; Cai, W. W.; Zhou, H.; Ji, P. X.; Liu, B. S.; Radwan, A.; He, D. P.; Mu, S. C. P-Fe bond oxygen reduction catalysts toward high-efficiency metal-air batteries and fuel cells. J. Mater. Chem. A 2020, 8, 9121–9127.

198

Fang, G. Z.; Wang, Q. C.; Zhou, J.; Lei, Y. P.; Chen, Z. X.; Wang, Z. Q.; Pan, A. Q.; Liang, S. Q. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 2019, 13, 5635–5645.

199

Yang, L.; Lv, Y. L.; Cao, D. P. Co, N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2018, 6, 3926–3932.

200

Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

201

Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

202

Zagal, J. H.; Koper, M. T. M. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 14510–14521.

203

Ma, Y.; Li, J. T.; Liao, X. B.; Luo, W.; Huang, W. Z.; Meng, J. S.; Chen, Q.; Xi, S. B.; Yu, R. H.; Zhao, Y. et al. Heterostructure design in bimetallic phthalocyanine boosts oxygen reduction reaction activity and durability. Adv. Funct. Mater. 2020, 30, 2005000.

204

Liu, W. P.; Hou, Y. X.; Pan, H. H.; Liu, W. B.; Qi, D. D.; Wang, K.; Jiang, J. Z.; Yao, X. D. An ethynyl-linked Fe/Co heterometallic phthalocyanine conjugated polymer for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 8349–8357.

205

Wang, J.; Liu, W.; Luo, G.; Li, Z. J.; Zhao, C.; Zhang, H. R.; Zhu, M. Z.; Xu, Q.; Wang, X. Q.; Zhao, C. M. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.

206

Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.

207

Sun, Y. L.; Wang, J.; Liu, Q.; Xia, M. R.; Tang, Y. F.; Gao, F. M.; Hou, Y. L.; Tse, J.; Zhao, Y. F. Itinerant ferromagnetic half metallic cobalt-iron couples: Promising bifunctional electrocatalysts for ORR and OER. J. Mater. Chem. A 2019, 7, 27175–27185.

208

Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and mxene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

209

Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.

210

Kramm, U. I.; Herrmann-Geppert, I.; Behrends, J.; Lips, K.; Fiechter, S.; Bogdanoff, P. On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc. 2016, 138, 635–640.

211

Shi, C. W.; Liu, Y. H.; Qi, R. Y.; Li, J. T.; Zhu, J. X.; Yu, R. H.; Li, S. D.; Hong, X. F.; Wu, J. S.; Xi, S. B. et al. Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy 2021, 87, 106153.

212

Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

213

Ao, X.; Zhang, W.; Zhao, B. T.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C. D.; Liu, M. L. Atomically dispersed Fe-N-C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 2020, 13, 3032–3040.

214

Wang, Z. H.; Jin, H. H.; Meng, T.; Liao, K.; Meng, W. Q.; Yang, J. L.; He, D. P.; Xiong, Y. L.; Mu, S. C. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1802596.

215

Ibraheem, S.; Chen, S. G.; Li, J.; Wang, Q. M.; Wei, Z. D. In situ growth of vertically aligned FeCoOOH-nanosheets/nanoflowers on Fe, N co-doped 3D-porous carbon as efficient bifunctional electrocatalysts for rechargeable zinc-O2 batteries. J. Mater. Chem. A 2019, 7, 9497–9502.

216

Lin, G. Q.; Ding, H. M.; Yuan, D. Q.; Wang, B. S.; Wang, C. A pyrene-based, fluorescent three-dimensional covalent organic framework. J. Am. Chem. Soc. 2016, 138, 3302–3305.

217

Huang, N.; Zhai, L. P.; Coupry, D. E.; Addicoat, M. A.; Okushita, K.; Nishimura, K.; Heine, T.; Jiang, D. L. Multiple-component covalent organic frameworks. Nat. Commun. 2016, 7, 12325.

218

Li, L. Y.; Li, L.; Cui, C. Y.; Fan, H. J.; Wang, R. H. Heteroatom-doped carbon spheres from hierarchical hollow covalent organic framework precursors for metal-free catalysis. ChemSusChem 2017, 10, 4921–4926.

219

Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578.

220

Wang, M.; Yang, Y. S.; Liu, X. B.; Pu, Z. H.; Kou, Z. K.; Zhu, P. P.; Mu, S. C. The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction. Nanoscale 2017, 9, 7641–7649.

221

Xiao, J. W.; Xu, Y. Y.; Xia, Y. T.; Xi, J. B.; Wang, S. Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy 2016, 24, 121–129.

222

Guo, J. N.; Li, Y.; Cheng, Y. H.; Dai, L. M.; Xiang, Z. H. Highly efficient oxygen reduction reaction electrocatalysts synthesized under nanospace confinement of metal-organic framework. ACS Nano 2017, 11, 8379–8386.

223

Gong, X. F.; Zhu, J. B.; Li, J. Z.; Gao, R.; Zhou, Q. Y.; Zhang, Z.; Dou, H. Z.; Zhao, L.; Sui, X. L.; Cai, J. J. et al. Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv. Funct. Mater. 2020, 31, 2008085.

224

Ma, S. Q.; Goenaga, G. A.; Call, A. V.; Liu D. J. Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem. Eur. J. 2011, 17, 2063–2067.

225

Shui, J. L.; Chen, C.; Grabstanowicz, L., Zhao, D.; Liu, D. J. Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc. Natl. Acad. Sci. USA 2015, 112, 10629–10643.

Publication history
Copyright
Acknowledgements

Publication history

Received: 03 July 2021
Revised: 12 August 2021
Accepted: 18 August 2021
Published: 18 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

W. X. C. acknowledges the National Natural Science Foundation of China (No. 21801015). W. X. C. acknowledges the Beijing Institute of Technology Research Fund Program for Young Scholars (No. 3090012221909).

Return