Journal Home > Volume 15 , Issue 3

Two-dimensional (2D) transition-metal dichalcogenide materials (TMDs) alloys have a wide range of applications in the field of optoelectronics due to their capacity to achieve wide modulation of the band gap with fully tunable compositions. However, it is still a challenge for growing alloys with uniform components and large lateral size due to the random distribution of the crystal nucleus locations. Here, we applied a simple but effective promoter assisted liquid phase chemical vapor deposition (CVD) method, in which the quantity ratio of promoter to metal precursor can be controlled precisely, leading to tiny amounts of transition metal oxide precursors deposition onto the substrates in a highly uniform and reproducible manner, which can effectively control the uniform distribution of element components and nucleation sites. By this method, a series of monolayer Nb1−xWxSe2 alloy films with fully tunable compositions and centimeter scale have been successfully synthesized on sapphire substrates. This controllable approach opens a new way to produce large area and uniform 2D alloy film, which has the potential for the construction of optoelectronic devices with tailored spectral responses.


menu
Abstract
Full text
Outline
About this article

Growth of centimeter scale Nb1−xWxSe2 monolayer film by promoter assisted liquid phase chemical vapor deposition

Show Author's information Boxing An1,§Yang Ma1,2,§Feihong Chu1,§Xuhong Li3Yi Wu1Congya You1Wenjie Deng1Songyu Li3Yongzhe Zhang1,2( )
Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Key Laboratory of Optoelectronics Technology of Education Ministry of China, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
School of Physics, Beihang University, Beijing 100191, China

§Boxing An, Yang Ma, and Feihong Chu contributed equally to this work.

Abstract

Two-dimensional (2D) transition-metal dichalcogenide materials (TMDs) alloys have a wide range of applications in the field of optoelectronics due to their capacity to achieve wide modulation of the band gap with fully tunable compositions. However, it is still a challenge for growing alloys with uniform components and large lateral size due to the random distribution of the crystal nucleus locations. Here, we applied a simple but effective promoter assisted liquid phase chemical vapor deposition (CVD) method, in which the quantity ratio of promoter to metal precursor can be controlled precisely, leading to tiny amounts of transition metal oxide precursors deposition onto the substrates in a highly uniform and reproducible manner, which can effectively control the uniform distribution of element components and nucleation sites. By this method, a series of monolayer Nb1−xWxSe2 alloy films with fully tunable compositions and centimeter scale have been successfully synthesized on sapphire substrates. This controllable approach opens a new way to produce large area and uniform 2D alloy film, which has the potential for the construction of optoelectronic devices with tailored spectral responses.

Keywords: centimeter scale, Nb1−xWxSe2, promoter assisted, liquid phase chemical vapor deposition

References(38)

1

Liu, C.; Wang, L; Qi, J. J.; Liu, K, H. Designed growth of large–size 2D single crystals. Adv. Mater. 2020, 32, 2000046.

2

Shao, G. L.; Lu, Y. Z.; Hong, J. H.; Xue, X. X.; Huang, J. Q.; Xu, Z. Y.; Lu, X. C.; Jin, Y. Y.; Liu, X.; Li, H. M. et al. Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. 2020, 7, 2002172.

3

Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

4

Cai, J. Y.; Han, X. X.; Wang, X.; Meng, X. B. Atomic layer deposition of two–dimensional layered materials: Processes, growth mechanisms, and characteristics. Matter 2020, 2, 587–630.

5

Ajayan, P.; Kim, P.; Banerjee, K. Two–dimensional van der Waals materials. Phys. Today 2016, 69, 39–44.

6

Yang, Y.; Zhang, K. X.; Zhang, L. B.; Hong, G.; Chen, C.; Jing, H. M.; Lu, J. B.; Wang, P.; Chen, X. S.; Wang, L. et al. Controllable growth of type–II dirac semimetal PtTe2 atomic layer on Au substrate for sensitive room temperature terahertz photodetection. InfoMat. 2021, 3, 705–715.

7

Li, X. B.; Chen, C.; Yang Y.; Lei Z. B.; Xu, H. 2D Re–based transition metal chalcogenides: Progress, challenges, and opportunities. Adv. Sci. 2020, 7, 2002320.

8

Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

9

Li, H.; Han, X.; Pan, D.; Yan, X.; Wang, H. W.; Wu, C. M.; Cheng, G. H.; Zhang, H. C.; Yang, S.; Li, B. K. et al. Bandgap engineering of InSe single crystals through S substitution. Cryst. Growth Des. 2018, 18, 2899–2904.

10

Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2xSe2–2x alloy nanosheets with composition–tunable electronic properties. Nano Lett. 2016, 16, 264–269.

11

Gao, W.; Zheng, Z. Q.; Huang, L.; Yao, J. D.; Zhao, Y.; Xiao, Y.; Li, J. B. Self–powered SnS1–xSex alloy/silicon heterojunction photodetectors with high sensitivity in a wide spectral range. ACS Appl. Mater. Interfaces 2019, 11, 40222–40231.

12

Wasala, M.; Sirikumara, H. I.; Sapkota, Y. R.; Hofer, S.; Mazumdar, D.; Jayasekera, T.; Talapatra, S. Recent advances in investigations of the electronic and optoelectronic properties of group III, IV, and V selenide based binary layered compounds. J. Mater. Chem. C 2017, 5, 11214–11225.

13

Kuc, A.; Heine, T. The electronic structure calculations of two–dimensional transition–metal dichalcogenides in the presence of external electric and magnetic fields. Chem. Soc. Rev. 2015, 44, 2603–2614.

14

Wang, H. Y.; Li, Z. X.; Li, D. Y.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Van der Waals integration based on two–dimensional materials for high–performance infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2103106.

15

Yang, S. X.; Chen, Y. J.; Jiang, C. B. Strain engineering of two-dimensional materials: Methods, properties, and applications. InfoMat. 2021, 3, 397–420.

16

Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.

17

Wang, D. G.; Zhang, X. W.; Guo, G. C.; Gao, S. H.; Li, X. X.; Meng, J. H.; Yin, Z. G.; Liu, H.; Gao, M. L.; Cheng, L. K. et al. Large–area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater. 2018, 30, 1803285.

18

Zheng, S. J.; Sun, L. F.; Yin, T. T.; Dubrovkin, A. M.; Liu, F. C.; Liu, Z.; Shen, Z. X.; Fan, H. J. Monolayers of WxMo1−xS2 alloy heterostructure with in–plane composition variations. Appl. Phys. Lett. 2015, 106, 063113.

19

Wang, S. X.; Cavin, J.; Hemmat, Z.; Kumar, K.; Ruckel, A.; Majidi, L.; Gholivand, H.; Dawood, R.; Cabana, J.; Guisinger, N. et al. Phase-dependent band gap engineering in alloys of metal–semiconductor transition metal dichalcogenides. Adv. Funct. Mater. 2020, 30, 2004912.

20

Zhang, X. M.; Xiao, S. Q.; Shi, L. H.; Nan, H. Y.; Wan, X.; Gu, X. F.; Ni, Z. H.; Ostrikov, K. Large–size Mo1–xWxS2 and W1–xMoxS2 (x = 0–0.5) monolayers by confined–space chemical vapor deposition. Appl. Surf. Sci. 2018, 457, 591–597.

21

Tan, C. L.; Lai, Z. C.; Zhang, H. Ultrathin two–dimensional multinary layered metal chalcogenide nanomaterials. Adv. Mater. 2017, 29, 1701392.

22

Wang, L.; Hu, P.; Long, Y.; Liu, Z.; He, X. X. Recent advances in ternary two–dimensional materials: Synthesis, properties and applications. J. Mater. Chem. A 2017, 5, 22855–22876.

23

Qin, Z. Y.; Loh, L.; Wang, J. Y.; Xu, X. M.; Zhang, Q.; Haas, B.; Alvarez, C.; Okuno, H.; Yong, J. Z.; Schultz, T. et al. Growth of Nb–doped monolayer WS2 by liquid–phase precursor mixing. ACS Nano 2019, 13, 10768–10775.

24

Park, S.; Yun, S. J.; Kim, Y. I.; Kim, J. H.; Kim, Y. M.; Kim, K. K.; Lee, Y. H. Tailoring domain morphology in monolayer NbSe2 and WxNb1–xSe2 heterostructure. ACS Nano 2020, 14, 8784–8792.

25

Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

26

Kim, M.; Seo, J.; Kim, J.; Moon, J. S.; Lee, J.; Kim, J. H.; Kang, J.; Park, H. High–crystalline monolayer transition metal dichalcogenides films for wafer–scale electronics. ACS Nano 2021, 15, 3038–3046.

27

Kim, H.; Han, G. H.; Yun, S. J.; Zhao, J.; Keum, D. H.; Jeong, H. Y.; Ly, T. H.; Jin, Y.; Park, J. H. Moon, B. H. et al. Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology 2017, 28, 36LT01.

28

Li, S. S.; Wang, S. F.; Tang, D. M.; Zhao, W. J.; Xu, H. L.; Chu, L. Q.; Bando, Y.; Golberg, D.; Eda, G. Halide–assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 2015, 1, 60–66.

29

Muoi, D.; Hieu, N. N.; Phung, H. T. T.; Phuc, H. V.; Amin, B.; Hoi, B. D.; Hieu, N. V.; Nhan, L. C.; Nguyen, C. V.; Le, P. T. T. Electronic properties of WS2 and WSe2 monolayers with biaxial strain: A first–principles study. Chem. Phys. 2019, 519, 69–73.

30

Yang, H. T.; Tao, H. J.; Zhao, Z. X. Charge–density wave in 2H–NbSe2 observed by scanning tunneling microscopy at 4.3 K. Chin. Phys. Lett. 1998, 15, 123–124.

31

Tang, L.; Xu, R. Z.; Tan J. Y.; Luo, Y. T.; Zou, J. Y.; Zhang, Z. T.; Zhang, R. J.; Zhao, Y.; Lin, J. H.; Zou, X. L. et al. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb–doping. Adv. Funct. Mater. 2021, 31, 2006941.

32

An, B. X.; Ma, Y.; Zhang, G. Q.; You, C. Y.; Zhang, Y. Z. Controlled synthesis of few–layer SnSe2 by chemical vapor deposition. RSC Adv. 2020, 10, 42157–42163.

33

Huang, J.; Yang, L.; Liu, D.; Chen, J. J.; Fu, Q.; Xiong, Y. J.; Lin, F.; Xiang, B. Large–area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale 2015, 7, 4193–4198.

34

Wang, H.; Huang, X. W.; Lin, J. H.; Cui, J.; Chen, Y.; Zhu, C.; Liu, F. C.; Zeng, Q. S.; Zhou, J. D.; Yu, P. et al. High–quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 2017, 8, 394.

35

Gao, J.; Kim, Y. D.; Liang, L. B.; Idrobo, J. C.; Chow, P.; Tan, J. W.; Li, B. C.; Li, L.; Sumpter, B. G.; Lu, T. M. et al. Transition–metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater. 2016, 28, 9735–9743.

36

Fan, S. D.; Yun, S. J.; Yu, W. J.; Lee, Y. H. Tailoring quantum tunneling in a vanadium–doped WSe2/SnSe2 heterostructure. Adv. Sci. 2020, 7, 1902751.

37

Pandey, S. K.; Alsalman, H.; Azadani, J. G.; Izquierdo, N.; Low, T.; Campbell, S. A. Controlled p–type substitutional doping in large–area monolayer WSe2 crystals grown by chemical vapor deposition. Nanoscale 2018, 10, 21374–21385.

38

Gao, S. Y.; Yang, L. Renormalization of the quasiparticle band gap in doped two–dimensional materials from many–body calculations. Phys. Rev. B. 2017, 96, 155410.

Publication history
Copyright
Acknowledgements

Publication history

Received: 22 July 2021
Revised: 10 August 2021
Accepted: 15 August 2021
Published: 04 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 61922005 and U1930105), the Beijing Municipal Natural Science Foundation (No. JQ20027). The National Natural Science Foundation of China (No. 62005003). The General Program of Science and Technology Development Project of Beijing Municipal Education Commission (No. KM202110005008). The Basic Research Foundation of Beijing University of Technology (No. 048000546320504).

Return