Journal Home > Volume 15 , Issue 3

The on-surface self-assembly of inorganic atomic clusters and organic molecules offers significant opportunities to design novel hybrid materials with tailored functionalities. By adopting the advantages from both inorganic and organic components, the hybrid self-assembly molecules have shown great potential in future optoelectrical devices. Herein, we report the co-deposition of 4,8-diethynylbenzo[1,2-d-4,5-d0]bisoxazole (DEBBA) and Se atoms to produce a motif-adjustable organic–inorganic hybrid self-assembly system via the non-covalent interactions. By controlling the coverage of Se atoms, various chiral molecular networks containing Se, Se 6, Se8, and terminal alkynes evolved on the Ag(111) surface. In particular, with the highest coverage of Se atoms, phase segregation into alternating one-dimensional chains of non-covalently bonded Se8 clusters and organic ligands has been noticed. The atom-coverage dependent evolution of self-assembly structures reflects the remarkable structural adaptability of Se clusters as building blocks based on the spontaneous resize to reach the maximum non-covalent interactions. This work has significantly extended the possibilities of flexible control in self-assembly nanostructures to enable more potential functions for broad applications.


menu
Abstract
Full text
Outline
About this article

Chiral self-assembly of terminal alkyne and selenium clusters organic–inorganic hybrid

Show Author's information Zhi Chen1,2Tao Lin3Haohan Li2Mingzi Sun4Chenliang Su1( )Bolong Huang4( )Kian Ping Loh2( )
SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
Department of Chemistry, Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

Abstract

The on-surface self-assembly of inorganic atomic clusters and organic molecules offers significant opportunities to design novel hybrid materials with tailored functionalities. By adopting the advantages from both inorganic and organic components, the hybrid self-assembly molecules have shown great potential in future optoelectrical devices. Herein, we report the co-deposition of 4,8-diethynylbenzo[1,2-d-4,5-d0]bisoxazole (DEBBA) and Se atoms to produce a motif-adjustable organic–inorganic hybrid self-assembly system via the non-covalent interactions. By controlling the coverage of Se atoms, various chiral molecular networks containing Se, Se 6, Se8, and terminal alkynes evolved on the Ag(111) surface. In particular, with the highest coverage of Se atoms, phase segregation into alternating one-dimensional chains of non-covalently bonded Se8 clusters and organic ligands has been noticed. The atom-coverage dependent evolution of self-assembly structures reflects the remarkable structural adaptability of Se clusters as building blocks based on the spontaneous resize to reach the maximum non-covalent interactions. This work has significantly extended the possibilities of flexible control in self-assembly nanostructures to enable more potential functions for broad applications.

Keywords: self-assembly, chiral, inorganic–organic hybrid, Se cluster, concentration-dependent

References(47)

1

Schlickum, U.; Decker, R.; Klappenberger, F.; Zoppellaro, G.; Klyatskaya, S.; Auwärter, W.; Neppl, S.; Kern, K.; Brune, H.; Ruben, M. et al. Chiral kagomé lattice from simple ditopic molecular bricks. J. Am. Chem. Soc. 2008, 130, 11778–11782.

2

Shi, Z. L.; Lin, N. Porphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 2009, 131, 5376–5377.

3

Chen, T.; Chen, Q.; Zhang, X.; Wang, D.; Wan, L. J. Chiral Kagome network from thiacalix[4]arene tetrasulfonate at the interface of aqueous solution/Au(111) surface: An in situ electrochemical scanning tunneling microscopy study. J. Am. Chem. Soc. 2010, 132, 5598–5599.

4

Chen, Q.; Bae, S. C.; Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381–384.

5

Wang, T.; Fan, Q. T.; Feng, L.; Tao, Z. J.; Huang, J. M.; Ju, H. X.; Xu, Q.; Hu, S. W.; Zhu, J. F. Chiral Kagome lattices from on-surface synthesized molecules. ChemPhysChem 2017, 18, 3329–3333.

6

Xing, L. B.; Jiang, W.; Huang, Z. C.; Liu, J.; Song, H. J.; Zhao, W. H.; Dai, J. X.; Zhu, H.; Wang, Z. H.; Weiss, P. S. et al. Steering two-dimensional porous networks with σ-hole interactions of Br···S and Br···Br. Chem. Mater. 2019, 31, 3041–3048.

7

Hernández-López, L.; Piquero-Zulaica, I.; Downing, C. A.; Piantek, M.; Fujii, J.; Serrate, D.; Ortega, J. E.; Bartolomé, F.; Lobo-Checa, J. Searching for kagome multi-bands and edge states in a predicted organic topological insulator. Nanoscale 2021, 13, 5216–5223.

8

Adisoejoso, J.; Tahara, K.; Okuhata, S.; Lei, S. B.; Tobe, Y.; De Feyter, S. Two-dimensional crystal engineering: A four-component architecture at a liquid–solid interface. Angew. Chem., Int. Ed. 2009, 48, 7353–7357.

9

Écija, D.; Urgel, J. I.; Papageorgiou, A. C.; Joshi, S.; Auwärter, W.; Seitsonen, A. P.; Klyatskaya, S.; Ruben, M.; Fischer, S.; Vijayaraghavan, S. et al. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly. Proc. Natl. Acad. Sci. USA. 2013, 110, 6678–6681.

10

Zhang, Y. Q.; Paszkiewicz, M.; Du, P.; Zhang, L. D.; Lin, T.; Chen, Z.; Klyatskaya, S.; Ruben, M.; Seitsonen, A. P.; Barth, J. V. et al. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nat. Chem. 2018, 10, 296–304.

11

Cheng, F.; Wu, X. J.; Hu, Z. X.; Lu, X. F.; Ding, Z. J.; Shao, Y.; Xu, H.; Ji, W.; Wu, J. S.; Loh, K. P. Two-dimensional tessellation by molecular tiles constructed from halogen–halogen and halogen–metal networks. Nat. Commun. 2018, 9, 4871.

12

Sharma, H. R.; Nozawa, K.; Smerdon, J. A.; Nugent, P. J.; McLeod, I.; Dhanak, V. R.; Shimoda, M.; Ishii, Y.; Tsai, A. P.; McGrath, R. Templated three-dimensional growth of quasicrystalline lead. Nat. Commun. 2013, 4, 2715.

13

Wasio, N. A.; Quardokus, R. C.; Forrest, R. P.; Lent, C. S.; Corcelli, S. A.; Christie, J. A.; Henderson, K. W.; Kandel, S. A. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 2014, 507, 86–89.

14

Urgel, J. I.; Écija, D.; Lyu, G. Q.; Zhang, R.; Palma, C. A.; Auwärter, W.; Lin, N.; Barth, J. V. Quasicrystallinity expressed in two-dimensional coordination networks. Nat. Chem. 2016, 8, 657–662.

15

Collins, L. C.; Witte, T. G.; Silverman, R.; Green, D. B.; Gomes, K. K. Imaging quasiperiodic electronic states in a synthetic Penrose tiling. Nat. Commun. 2017, 8, 15961.

16

Kalashnyk, N.; Ledieu, J.; Gaudry, É.; Cui, C.; Tsai, A. P.; Fournée, V. Building 2D quasicrystals from 5-fold symmetric corannulene molecules. Nano Res. 2018, 11, 2129–2138.

17

Paßens, M.; Karthäuser, S. Rotational switches in the two-dimensional fullerene quasicrystal. Acta Crystallogr. A:Found Adv. 2019, 75, 41–49.

18

Shang, J.; Wang, Y. F.; Chen, M.; Dai, J. X.; Zhou, X.; Kuttner, J.; Hilt, G.; Shao, X.; Gottfried, J. M.; Wu, K. Assembling molecular Sierpiński triangle fractals. Nat. Chem. 2015, 7, 389–393.

19

Li, N.; Zhang, X.; Gu, G. C.; Wang, H.; Nieckarz, D.; Szabelski, P.; He, Y.; Wang, Y.; Lü, J. T.; Tang, H. et al. Sierpiński-triangle fractal crystals with the C3v point group. Chin. Chem. Lett. 2015, 26, 1198–1202.

20

Mo, Y. P.; Chen, T.; Dai, J. X.; Wu, K.; Wang, D. On-surface synthesis of highly ordered covalent Sierpiński triangle fractals. J. Am. Chem. Soc. 2019, 141, 11378–11382.

21

Wang, Y. F.; Xue, N.; Li, R. N.; Wu, T. H.; Li, N.; Hou, S. M.; Wang, Y. F. Construction and properties of Sierpinski triangular fractals on surfaces. ChemPhysChem 2019, 20, 2262–2270.

22

Feng, G. Y.; Shen, Y. T.; Yu, Y. X.; Liang, Q.; Dong, J.; Lei, S. B.; Hu, W. P. Boronic ester Sierpinski triangle fractals: From precursor design to on-surface synthesis and self-assembling superstructures. Chem. Commun. 2021, 57, 2065–2068.

23

Elemans, J. A. A. W.; Lei, S. B.; De Feyter, S. Molecular and supramolecular networks on surfaces: From two-dimensional crystal engineering to reactivity. Angew. Chem., Int. Ed. 2009, 48, 7298–7332.

24

Chen, T.; Wang, D.; Wan, L. J. Two-dimensional chiral molecular assembly on solid surfaces: Formation and regulation. Natl. Sci. Rev. 2015, 2, 205–216.

25

Mali, K. S.; Pearce, N.; De Feyter, S.; Champness, N. R. Frontiers of supramolecular chemistry at solid surfaces. Chem. Soc. Rev. 2017, 46, 2520–2542.

26

Xing, L. B.; Peng, Z. T.; Li, W. T.; Wu, K. On controllability and applicability of surface molecular self-assemblies. Acc. Chem. Res. 2019, 52, 1048–1058.

27

Huan, J. W.; Zhang, X. M.; Zeng, Q. D. Two-dimensional supramolecular crystal engineering: Chirality manipulation. Phys. Chem. Chem. Phys. 2019, 21, 11537–11553.

28

Li Y. H.; Yu C. B.; Li Z.; Jiang, P. Zhou, X. Y.; Gao C. F.; Li J. Y. Layer-dependent and light-tunable surface potential of two-dimensional indium selenide (InSe) flakes. Rare Met. 2020, 39, 1356–1363.

29

Zaera, F. Chirality in adsorption on solid surfaces. Chem. Soc. Rev. 2017, 46, 7374–7398.

30

Zhang, Y. Q.; Björk, J.; Barth, J. V.; Klappenberger, F. Intermolecular hybridization creating nanopore orbital in a supramolecular hydrocarbon sheet. Nano Lett. 2016, 16, 4274–4281.

31

Chen, Q.; Chen, T.; Wang, D.; Liu, H. B.; Li, Y. L.; Wan, L. J. Structure and structural transition of chiral domains in oligo(p-phenylenevinylene) assembly investigated by scanning tunneling microscopy. Proc. Natl. Acad. Sci. USA. 2010, 107, 2769–2774.

32

Liu, J.; Chen, T.; Deng, X.; Wang, D.; Pei, J.; Wan, L. J. Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly. J. Am. Chem. Soc. 2011, 133, 21010–21015.

33

Hu, B. J.; Wu, P. Y. Facile synthesis of large-area ultrathin two-dimensional supramolecular nanosheets in water. Nano Res. 2020, 13, 868–874.

34

Fang, Z. W.; Xing, Q. Y.; Fernandez, D.; Zhang, X.; Yu, G. H. A mini review on two-dimensional nanomaterial assembly. Nano Res. 2020, 13, 1179–1190.

35

Yuan, Z.; Tai, H. L.; Su, Y. J.; Xie, G. Z.; Du, X. S.; Jiang, Y. D. Self-assembled graphene oxide/polyethyleneimine films as high-performance quartz crystal microbalance humidity sensors. Rare Met. 2021, 40, 1597–1603.

36

Huang, M.; Liu, J. X.; Huang, P.; Hu, H.; Lai, C. Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries. Rare Met. 2021, 40, 425–432.

37

Lyu, M. Q.; Yun, J. H.; Cai, M. L.; Jiao, Y. L.; Bernhardt, P. V.; Zhang, M.; Wang, Q.; Du, A. J.; Wang, H. X.; Liu, G.; et al. Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light–absorber beyond organolead perovskites. Nano Res. 2016, 9, 692–702.

38

Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic–inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007.

39

Saparov, B.; Mitzi, D. B. Organic–inorganic perovskites: Structural versatility for functional materials design. Chem. Rev. 2016, 116, 4558–4596.

40

Dietz, J.; Müller, U.; Müller, V.; Dehnicke, K. The crystal structures of (NEt4+)2[Se52– · 1/2 Se6 · Se7] and (NPr4)2Se11. Z. Naturforsch. B 1991, 46, 1293–1299.

41

Panthöfer, M.; Shopova, D.; Jansen, M. Crystal structure and stablility of the fullerene–chalcogene co-crystal C60Se8CS2. Z. Anorg. Allg. Chem. 2005, 631, 1387–1390.

42

Shopova, D.; Panthöfer, M.; Petricek, V.; Jansen, M. Refinement strategies for fullerene structures: Use of local, non-crystallographical point group symmetry. Z. Kristallogr. 2007, 222, 546–550.

43

Lister, T. E.; Stickney, J. L. Atomic level studies of selenium electrodeposition on Gold(111) and Gold(110). J. Phys. Chem. 1996, 100, 19568–19576.

44

Ruano, G.; Tosi, E.; Sanchez, E.; Abufager, P.; Martiarena, M. L.; Grizzi, O.; Zampieri, G. Stages of Se adsorption on Au(111): A combined XPS, LEED, TOF-DRS, and DFT study. Surf. Sci. 2017, 662, 113–122.

45

Chen, Z.; Lin, T.; Li, H. H.; Cheng, F.; Su, C. L.; Loh, K. P. Hydrogen bond guided synthesis of close-packed one-dimensional graphdiyne on the Ag(111) surface. Chem. Sci. 2019, 10, 10849–10852.

46

Wang, D. L.; Fang, Y.; Wang, S. Y.; Ji, S. J. Silver-mediated activation of terminal alkynes: A strategy to construct bis-ethynynl selenides and tellurides. Tetrahedron 2020, 76, 131083.

47

Karhu, A. J.; Pakkanen, O. J.; Rautiainen, J. M.; Oilunkaniemi, R.; Chivers, T.; Laitinen, R. S. Experimental and computational 77Se NMR investigations of the cyclic eight-membered selenium imides 1, 3, 5, 7-Se4(NR)4 (R = Me, tBu) and 1, 5-Se6(NMe)2. Inorg. Chem. 2015, 54, 4990–4997.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 July 2021
Revised: 15 August 2021
Accepted: 16 August 2021
Published: 25 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (Nos. 2019A1515110819 and 2020A1515010767), NRF-CRP grant “Two Dimensional Covalent Organic Framework: Synthesis and Applications” (No. NRF-CRP16-2015-02, funded by National Research Foundation, Prime Minister’s Office, Singapore), the Shenzhen Peacock Plan (No. KQTD2016053112042971), and the National Natural Science Foundation of China (Nos. 21802067 and 21771156).

Return