Journal Home > Volume 14 , Issue 12

An efficient preparation and local coordination environment regulation of isolated single-atom sites catalysts (ISASC) for improved activity is still challenging. Herein, we develop a solid phase thermal diffusion strategy to synthesize Mn ISASC on highly uniform nitrogen-doped carbon nanotubes by employing MnO2 nanowires@ZIF-8 core-shell structure. Under high-temperature, the Mn species break free from core-MnO2 lattice, which will be trapped by carbon defects derived from shell-ZIF-8 carbonization, and immobilized within carbon substrate. Furthermore, the poly-dispersed Mn sites with two nitrogen-coordinated centers can be controllably renovated into four-nitrogen-coordinated Mn sites using NH3 treatment technology. Both experimental and computational investigations indicate that the symmetric coordinated Mn sites manifest outstanding oxygen reduction activity and superior stability in alkaline and acidic solutions. This work not only provides efficient way to regulate the coordination structure of ISASC to improve catalytic performance but also paves the way to reveal its significant promise for commercial application.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance

Show Author's information Zhengkun Yang1,3,§( )Xiaolin Wang2,§Mengzhao Zhu1,§Xinyan Leng3Wenxing Chen4Wenyu Wang1Qian Xu5Li-Ming Yang2( )Yuen Wu1( )
School of Chemistry and Materials Science, iChEM, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei 230601, China
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
National Synchrotron Radiation Laboratory (NSRL), Hefei 230026, China

Abstract

An efficient preparation and local coordination environment regulation of isolated single-atom sites catalysts (ISASC) for improved activity is still challenging. Herein, we develop a solid phase thermal diffusion strategy to synthesize Mn ISASC on highly uniform nitrogen-doped carbon nanotubes by employing MnO2 nanowires@ZIF-8 core-shell structure. Under high-temperature, the Mn species break free from core-MnO2 lattice, which will be trapped by carbon defects derived from shell-ZIF-8 carbonization, and immobilized within carbon substrate. Furthermore, the poly-dispersed Mn sites with two nitrogen-coordinated centers can be controllably renovated into four-nitrogen-coordinated Mn sites using NH3 treatment technology. Both experimental and computational investigations indicate that the symmetric coordinated Mn sites manifest outstanding oxygen reduction activity and superior stability in alkaline and acidic solutions. This work not only provides efficient way to regulate the coordination structure of ISASC to improve catalytic performance but also paves the way to reveal its significant promise for commercial application.

Keywords: fuel cells, thermal diffusion, coordination repairing, single-atom manganese, oxygen reduction catalysis

References(39)

1

Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

2

Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 2016, 1, 16128.

3

Liu, T.; Leskes, M.; Yu, W. J.; Moore, A. J.; Zhou, L. N.; Bayley, P. M.; Kim, G.; Grey, C. P. Cycling Li-O2 batteries via LiOH formation and decomposition. Science 2015, 350, 530–533.

4

Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

5

Tan, P.; Chen, B.; Xu, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.

6

Zhang, B. Q.; Wang, S. Y.; Fan, W. J.; Ma, W. G.; Liang, Z. X.; Shi, J. Y.; Liao, S. J.; Li, C. Photoassisted oxygen reduction reaction in H2-O2 fuel cells. Angew. Chem., Int. Ed. 2016, 55, 14748–14751.

7

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

8

Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. L. et al. Isolated single-atom Pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.

9

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

10

Qiao, B. T.; Liu, J. X.; Wang, Y. G.; Lin, Q. Q.; Liu, X. Y.; Wang, A. Q.; Li, J.; Zhang, T.; Liu, J. Y. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 2015, 5, 6249–6254.

11

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

12
Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2021, in press, DOI: 10.1007/s12274-021-3479-8.https://doi.org/10.1007/s12274-021-3479-8
DOI
13

Wang, Y.; Wang, D. S.; Li, Y. D. Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis. J. Energy Chem. 2022, 65, 103–115.

14

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 2008151, inpress.

15

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

16

Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

17

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

18

Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692–12697.

19

Zang, W. J.; Sumboja, A.; Ma, Y. Y.; Zhang, H.; Wu, Y.; Wu, S. S.; Wu, H. J.; Liu, Z. L.; Guan, C.; Wang, J. et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc−air battery cathodes. ACS Catal. 2018, 8, 8961–8969.

20

Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

21

Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

22

Choi, C. H.; Lim, H. K.; Chung, M. W.; Chon, G.; Sahraie, N. R.; Altin, A.; Sougrati, M. T.; Stievano, L.; Oh, H. S.; Park, E. S. et al. The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy Environ. Sci. 2018, 11, 3176–3182.

23

Tylus, U.; Jia, Q. Y.; Strickland, K.; Ramaswamy, N.; Serov, A.; Atanassov, P.; Mukerjee, S. Elucidating oxygen reduction active sites in pyrolyzed metal–nitrogen coordinated non-precious-metal electrocatalyst systems. J. Phys. Chem. C 2014, 118, 8999–9008.

24

Yang, Y.; Mao, K. T.; Gao, S. Q.; Huang, H.; Xia, G. L.; Lin, Z. Y.; Jiang, P.; Wang, C. L.; Wang, H.; Chen, Q. W. O-, N-atoms-coordinated Mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 2018, 30, 1801732.

25

Zhu, X. F.; Amal, R.; Lu, X. Y. N, P co-coordinated manganese atoms in mesoporous carbon for electrochemical oxygen reduction. Small 2019, 15, 1804524.

26

Liu, K. X.; Qiao, Z.; Hwang, S.; Liu, Z. Y.; Zhang, H. G.; Su, D.; Xu, H.; Wu, G.; Wang, G. F. Mn- and N-doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. Appl. Catal. B:Environ. 2019, 243, 195–203.

27

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

28

Xiong, X. Y.; Li, Y. J.; Jia, Y.; Meng, Y.; Sun, K.; Zheng, L. R.; Zhang, G. X.; Li, Y. P.; Sun, X. M. Ultrathin atomic Mn-decorated formamide-converted N-doped carbon for efficient oxygen reduction reaction. Nanoscale 2019, 11, 15900–15906.

29

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

30

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal–organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed 2021, 60, 3212–3221.

31

Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

32

Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

33

Wang, H. Y.; Xiao, F. X.; Yu, L.; Liu, B.; Lou, X. W. Hierarchical α-MnO2 nanowires@Ni1-xMnxOy nanoflakes core-shell nanostructures for supercapacitors. Small 2014, 10, 3181–3186.

34

Yang, Z. K.; Yuan, C. Z.; Xu, A. W. Confined pyrolysis within a nanochannel to form a highly efficient single iron site catalyst for Zn–air batteries. ACS Energy Lett. 2018, 3, 2383–2389.

35

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

36

Liu, Z. X.; Li, Z. P.; Qin, H. Y.; Liu, B. H. Oxygen reduction reaction via the 4-electron transfer pathway on transition metal hydroxides. J. Power Sources 2011, 196, 4972–4979.

37

Su, P. P.; Huang, W. J.; Zhang, J. W.; Guharoy, U.; Du, Q. G.; Sun, Q.; Jiang, Q. K.; Cheng, Y.; Yang, J.; Zhang, X. L. et al. Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction. Nano Res. 2021, 14, 1069–1077.

38

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 2006, 36, 354–360.

39

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.

File
3823_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 July 2021
Revised: 13 August 2021
Accepted: 16 August 2021
Published: 16 September 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China 2017YFA (Nos. 0208300 and 0700104), the National Natural Science Foundation of China (Nos. 21671180, 21802132, 22073033, 21673087, 21873032, and 21903032), startup fund (Nos. 2006013118 and 3004013105) from Huazhong University of Science and Technology, the Fundamental Research Funds for the Central Universities (2019kfyRCPY116), and the Innovation and Talent Recruitment Base of New Energy Chemistry and Device (B21003). The work was carried out at the LvLiang Cloud Computing Center of China, and the calculations were performed on TianHe-2. The computing work in this paper is supported by the public computing service platform provided by Network and Computing Center of HUST. We thank the photoemission endstations BL1W1B in Beijing Synchrotron Radiation Facility (BSRF), BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF), BL10B and BL11U in National Synchrotron Radiation Laboratory (NSRL) for the help in characterizations.

Return