Journal Home > Volume 15 , Issue 3

Energy harvesting and power transmission is a significant challenge for the self-powered technologies towards mobile electronic devices. Here, we propose a hybridized energy harvester to complement each other's strengths for simultaneously scavenging multiple types of energy and then wirelessly transmit the power. The harvester consists of electromagnetic-triboelectric nanogenerator units for collecting rotational energy and a commercial water-proof flexible solar cell. At a rotation rate of 500 rpm, the output current of electromagnetic-triboelectric nanogenerator units can reach about 630 mA through energy management. Moreover, the power harvested by hybridized energy harvester can be wirelessly transmitted up to a distance of about 100 cm in real time to charge mobile phone, anemometer, and hygrometer based on self-resonant coils. The hybridized energy harvester with wireless power transmission has potential applications in large-scale energy collection, long-distance wireless power transmission and sustainably driving mobile electronic devices.


menu
Abstract
Full text
Outline
About this article

Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission

Show Author's information Yandong Chen1,2,§Yang Jie1,2,§Jiaqing Zhu1,3,§Qixin Lu1,2,4Yu Cheng1,2Xia Cao1,2,3,4( )Zhong Lin Wang1,2,5( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, Beijing Municipal Key Laboratory of New Energy Materials and Technologies, and Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University, Nanning 530004, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA

§Yandong Chen, Yang Jie, and Jiaqing Zhu contributed equally to this work.

Abstract

Energy harvesting and power transmission is a significant challenge for the self-powered technologies towards mobile electronic devices. Here, we propose a hybridized energy harvester to complement each other's strengths for simultaneously scavenging multiple types of energy and then wirelessly transmit the power. The harvester consists of electromagnetic-triboelectric nanogenerator units for collecting rotational energy and a commercial water-proof flexible solar cell. At a rotation rate of 500 rpm, the output current of electromagnetic-triboelectric nanogenerator units can reach about 630 mA through energy management. Moreover, the power harvested by hybridized energy harvester can be wirelessly transmitted up to a distance of about 100 cm in real time to charge mobile phone, anemometer, and hygrometer based on self-resonant coils. The hybridized energy harvester with wireless power transmission has potential applications in large-scale energy collection, long-distance wireless power transmission and sustainably driving mobile electronic devices.

Keywords: triboelectric nanogenerator, solar cell, electromagnetic generator, hybridized energy harvester

References(52)

1

Van Neste, C. W.; Hawk, J. E.; Phani, A.; Backs, J. A. J.; Hull, R.; Abraham, T.; Glassford, S. J.; Pickering, A. K.; Thundat, T. Single-contact transmission for the quasi-wireless delivery of power over large surfaces. Wirel. Power Transf. 2014, 1, 75–82.

2

Xie, L.; Shi, Y.; Hou, Y.T.; Lou, W. J. Wireless power transfer and applications to sensor networks. IEEE Wirel. Commun. 2013, 20, 140–145.

3
Van Neste, C. W.; Phani, A.; Larocque, A.; Hawk, J. E.; Kalra, R.; Banaag, M. J.; Wu, M.; Thundat, T. Quarter wavelength resonators for use in wireless capacitive power transfer. In 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, 2017, pp 229–234.https://doi.org/10.1109/WoW.2017.7959399
DOI
4

Zhang, X.; Zhao, Y. P.; Ho, S. L.; Fu, W. N. Analysis of wireless power transfer system based on 3-D finite-element method including displacement current. IEEE Trans. Magnet. 2012, 48, 3692–3695.

5
Onar, O. C.; Miller, J. M.; Campbell, S. L.; Coomer, C.; White, C. P.; Seiber, L. E. A novel wireless power transfer for in-motion EV/PHEV charging. In 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, 2013, pp 3073–3080.https://doi.org/10.1109/APEC.2013.6520738
DOI
6

Jeong, C. K.; Han, J. H.; Palneedi, H.; Park, H.; Hwang, G. T.; Joung, B.; Kim, S. G.; Shin, H. J.; Kang, I. S.; Ryu, J. et al. Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 2017, 5, 074102.

7

Shao, H. Y.; Wen, Z.; Cheng, P.; Sun, N.; Shen, Q. Q.; Zhou, C. J.; Peng, M. F.; Yang, Y. Q.; Xie, X. K.; Sun, X. H. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 2017, 39, 608–615.

8

Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

9

Wen, Z.; Yeh, M. H.; Guo, H. Y.; Wang, J.; Zi, Y. L.; Xu, W. D.; Deng, J. N.; Zhu, L.; Wang, X.; Hu, C. G. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097.

10

Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

11

Liu, Y. D.; Ren, L.; Qi, X.; Yang, L. W.; Hao, G. L.; Li, J.; Wei, X. L.; Zhong, J. X. Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route. J. Alloys Compd. 2013, 571, 37–42.

12

Yang, Y.; Zhang, H. L.; Liu, Y.; Lin, Z. H.; Lee, S.; Lin, Z. Y.; Wong, C. P.; Wang, Z. L. Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 2013, 7, 2808–2813.

13

Yang, Y.; Zhang, H. L.; Zhu, G.; Lee, S.; Lin, Z. H.; Wang, Z. L. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 2013, 7, 785–790.

14

Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

15

Tian, J. W.; Chen, X. Y.; Wang, Z. L. Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 2020, 31, 242001.

16

Liu, Z.; Li, H.; Shi, B. J.; Fan, Y. B.; Wang, Z. L.; Li, Z. Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1808820.

17

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

18

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

19

Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator.ACS Nano 2016, 10, 4797–4805.

DOI
20

Jin, L.; Chen, J.; Zhang, B. B.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Huang, X.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 2016, 10, 7874–7881.

21

Sun, J. Y.; Yang, A. P.; Zhao, C. C.; Liu, F.; Li, Z. Recent progress of nanogenerators acting as biomedical sensors in vivo. Sci. Bull. 2019, 64, 1336–1347.

22

Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

23

Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

24

Pu, X. J.; Guo, H. Y.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 2017, 3, e1700694.

25

Cheng, X. L.; Meng, B.; Zhang, X. S.; Han, M. D.; Su, Z. M.; Zhang, H. X. Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energy 2015, 12, 19–25.

26

Wu, C. S.; Jiang, P.; Li, W.; Guo, H. Y.; Wang, J.; Chen, J.; Prausnitz, M. R.; Wang, Z. L. Self-powered iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions. Adv. Funct. Mater. 2019, 30, 1907378.

27

Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

28

Xiao, X.; Zhang, X. Q.; Wang, S. Y.; Ouyang, H.; Chen, P. F.; Song, L. G.; Yuan, H. C.; Ji, Y. L.; Wang, P. H.; Li, Z. et al. Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Adv. Energy Mater. 2019, 9, 1902460.

29

Wang, X. F.; Niu, S. M.; Yi, F.; Yin, Y. J.; Hao, C. L.; Dai, K. R.; Zhang, Y.; You, Z.; Wang, Z. L. Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 2017, 11, 1728–1735.

30

Wang, X.; Wen, Z.; Guo, H. Y.; Wu, C. S.; He, X.; Lin, L.; Cao, X.; Wang, Z. L. Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 2016, 10, 11369–11376.

31

Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70. 6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

32

Cao, R.; Zhou, T.; Wang, B.; Yin, Y. Y.; Yuan, Z. Q.; Li, C. J.; Wang, Z. L. Rotating-sleeve triboelectric–electromagnetic hybrid nanogenerator for high efficiency of harvesting mechanical energy. ACS Nano 2017, 11, 8370–8378.

33

Qian, J. G.; Jing, X. J. Wind-driven hybridized triboelectric-electromagnetic nanogenerator and solar cell as a sustainable power unit for self-powered natural disaster monitoring sensor networks. Nano Energy 2018, 52, 78–87.

34

Wang, P. H.; Liu, R. Y.; Ding, W. B.; Zhang, P.; Pan, L.; Dai, G. Z.; Zou, H. Y.; Dong, K.; Xu, C.; Wang, Z. L. Complementary electromagnetic-triboelectric active sensor for detecting multiple mechanical triggering. Adv. Funct. Mater. 2018, 28, 1705808.

35

Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

36

Chen, Y. D.; Cheng, Y.; Jie, Y.; Cao, X.; Wang, N.; Wang, Z. L. Energy harvesting and wireless power transmission by a hybridized electromagnetic–triboelectric nanogenerator. Energy Environ. Sci. 2019, 12, 2678–2684.

37

Marincic, A. S. Nikola tesla and the wireless transmission of energy. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 4064–4068.

38

Shu, X. J.; Zhang, B. Single-wire electric-field coupling power transmission using nonlinear parity-time-symmetric model with coupled-mode theory. Energies 2018, 11, 532.

39

Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J. D.; Fisher, P.; Soljačić, M. Wireless power transfer via strongly coupled magnetic resonances. Science 2007, 317, 83–86.

40

Hui, S. Y. R. Magnetic resonance for wireless power transfer [a look back]. IEEE Power Electron. Mag. 2016, 3, 14–31.

41

Thomas, E. M.; Heebl, J. D.; Pfeiffer, C.; Grbic, A. A power link study of wireless non-radiative power transfer systems using resonant shielded loops. IEEE Trans. Circuits Syst. I: Regular Papers 2012, 59, 2125–2136.

42

Jie, Y.; Ma, J. M.; Chen, Y. D.; Cao, X.; Wang, N.; Wang, Z. L. Efficient delivery of power generated by a rotating triboelectric nanogenerator by conjunction of wired and wireless transmissions using maxwell's displacement currents. Adv. Energy Mater. 2018, 8, 1802084.

43

Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

44

Zhu, G.; Bai, P.; Chen, J.; Wang, Z. L. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2013, 2, 688–692.

45

Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

46

Guo, Y. L.; Chen, Y. D.; Ma, J. M.; Zhu, H. R.; Cao, X.; Wang, N.; Wang, Z. L. Harvesting wind energy: A hybridized design of pinwheel by coupling triboelectrification and electromagnetic induction effects. Nano Energy 2019, 60, 641–648.

47

Guo, H. Y.; Wen, Z.; Zi, Y. L.; Yeh, M. H.; Wang, J.; Zhu, L. P.; Hu, C. G.; Wang, Z. L. A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 2016, 6, 1501593.

48

Hu, Y. F.; Yang, J.; Niu, S. M.; Wu, W. Z.; Wang, Z. L. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. ACS Nano 2014, 8, 7442–7450.

49

Wang, H. S.; Jeong, C. K.; Seo, M. H.; Joe, D. J.; Han, J. H.; Yoon, J. B.; Lee, K. J. Performance-enhanced triboelectric nanogenerator enabled by wafer-scale nanogrates of multistep pattern downscaling. Nano Energy 2017, 35, 415–423.

50

Fan, F. R.; Tang, W.; Yao, Y.; Luo, J. J.; Zhang, C.; Wang, Z. L. Complementary power output characteristics of electromagnetic generators and triboelectric generators. Nanotechnology 2014, 25, 135402.

51

Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic–triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247.

52

Tang, W.; Meng, B.; Zhang, H. X. Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energy 2013, 2, 1164–1171.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 June 2021
Revised: 03 August 2021
Accepted: 13 August 2021
Published: 28 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We thank the financial support from the National key R&D project from Minister of Science and Technology, China (Nos. 2016YFA0202702 and 2016YFA0202701), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-DQC025), the National Postdoctoral Program for Innovative Talents (No. BX20180081), and China Postdoctoral Science Foundation (No. 2019M650604). Patents have been filed to protect the reported inventions.

Return