Journal Home > Volume 15 , Issue 3

Because of a weak interface-bonding force between metal–organic frameworks (MOFs) and substrates and the loss of customization in structural designs owing to the lack of the regulation of ion sites, MOFs tend to escape from the constructed composite template. In this study, the as-prepared 2,2,6,6-tetramethylpiperidyl-1-oxyl (TEMPO)-oxidized algae cellulose nanofibers (TACFs) were used to chelate metal ions at controllable sites and subsequently firmly entangle the assembled MOF crystals. The distribution of ions and synthesized MOFs inside the gel was monitored using Raman imaging technology, which provided an intuitive approach for visually observing the ions and MOF distribution. Using this technology, the synthesized customizable TACFs@ZIF-67 aerogels exhibited a high specific surface area (734.7 m2/g), low density (6.18 mg/cm3), controlled particle distribution, good underwater structural stability, and excellent adsorption of dyes. This study provides a way for solving the dispersion problem of MOFs in nanofibrous aerogels using Raman imaging technology–assisted microcosmic fixed-point design.


menu
Abstract
Full text
Outline
About this article

Raman imaging-assisted customizable assembly of MOFs on cellulose aerogel

Show Author's information Zhanhong Yuan1Dingding Meng2Yingzhu Wu1Guangqing Tang1Ping Liang2( )John H. Xin3Dongdong Ye1( )
School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Abstract

Because of a weak interface-bonding force between metal–organic frameworks (MOFs) and substrates and the loss of customization in structural designs owing to the lack of the regulation of ion sites, MOFs tend to escape from the constructed composite template. In this study, the as-prepared 2,2,6,6-tetramethylpiperidyl-1-oxyl (TEMPO)-oxidized algae cellulose nanofibers (TACFs) were used to chelate metal ions at controllable sites and subsequently firmly entangle the assembled MOF crystals. The distribution of ions and synthesized MOFs inside the gel was monitored using Raman imaging technology, which provided an intuitive approach for visually observing the ions and MOF distribution. Using this technology, the synthesized customizable TACFs@ZIF-67 aerogels exhibited a high specific surface area (734.7 m2/g), low density (6.18 mg/cm3), controlled particle distribution, good underwater structural stability, and excellent adsorption of dyes. This study provides a way for solving the dispersion problem of MOFs in nanofibrous aerogels using Raman imaging technology–assisted microcosmic fixed-point design.

Keywords: aerogel, metal–organic framework, cellulose nanofiber, Raman imaging, ion distribution

References(43)

1

He, H. H.; Li, L. Y.; Liu, Y.; Kassymova, M.; Li, D. D.; Zhang, L. L.; Jiang, H. L. Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles. Nano Res. 2021, 14, 444–449.

2

Fan, W. D.; Wang, X.; Liu, X. P.; Xu, B.; Zhang, X. R.; Wang, W. J.; Wang, X. K.; Wang, Y. T.; Dai, F. N.; Yuan, D. Q. et al. Regulating C2H2 and CO2 storage and separation through pore environment modification in a microporous Ni-MOF. ACS Sustainable Chem. Eng. 2019, 7, 2134–2140.

3

Hillman, F.; Jeong, H. K. Linker-doped zeolitic imidazolate frameworks (ZIFs) and their ultrathin membranes for tunable gas separations. ACS Appl. Mater. Interfaces 2019, 11, 18377–18385.

4

Chen, D. X.; Yang, W. J.; Jiao, L.; Li, L. Y.; Yu, S. H.; Jiang, H. L. Boosting Catalysis of Pd nanoparticles in MOFs by pore wall engineering: The roles of electron transfer and adsorption energy. Adv. Mater. 2020, 32, 2000041.

5

Sun, Y. J.; Zheng, L. W.; Yang, Y.; Qian, X.; Fu, T.; Li, X. W.; Yang, Z. Y.; Yan, H.; Cui, C.; Tan, W. H. Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 2020, 12, 103.

6

Gao, Y.; Wu, J. F.; Wang, J. Q.; Fan, Y. X.; Zhang, S. Y.; Dai, W. A novel multifunctional p-type semiconductor@MOFs nanoporous platform for simultaneous sensing and photodegradation of tetracycline. ACS Appl. Mater. Interfaces 2020, 12, 11036–11044.

7

Ma, K. K.; Wang, Y. F.; Chen, Z. J.; Islamoglu, T.; Lai, C. L.; Wang, X. W.; Fei, B.; Farha, O. K.; Xin, J. H. Facile and scalable coating of metal-organic frameworks on fibrous substrates by a coordination replication method at room temperature. ACS Appl. Mater. Interfaces 2019, 11, 22714–22721.

8

Ma, K. K.; Islamoglu, T.; Chen, Z. J.; Li, P.; Wasson, M. C.; Chen, Y. W.; Wang, Y. F.; Peterson, G. W.; Xin, J. H.; Farha, O. K. Scalable and template-free aqueous synthesis of zirconium-based metal–organic framework coating on textile fiber. J. Am. Chem. Soc. 2019, 141, 15626–15633.

9

Yu, L. Q.; Yan, X. P. Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chem. Commum. 2013, 49, 2142–2144.

10

Li, Z. Q.; Yin, L. W. Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4–ZnO–C on nickel foam as anodes for high performance lithium ion batteries. J. Mater. Chem. A 2015, 3, 21569–21577.

11

Yang, Q. X.; Lu, R.; Ren, S. S.; Chen, C. T.; Chen, Z. J.; Yang, X. Y. Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water. Chem. Eng. J. 2018, 348, 202–211.

12

Wang, K. T.; Wang, F.; Chen, F.; Cui, X. M.; Wei, Y. Z.; Shao, L.; Yu, M. H. One-pot preparation of NaA zeolite microspheres for highly selective and continuous removal of Sr (II) from aqueous solution. ACS Sustainable Chem. Eng. 2019, 7, 2459–2470.

13

Wang, Y.; Zhang, L.; Li, R.; He, H. B.; Wang, H. Y.; Huang, L. MOFs-based coating derived Me-ZIF-67@CuOx materials as low-temperature NO-CO catalysts. Chem. Eng. J. 2020, 381, 122757.

14

Avci-Camur, C.; Troyano, J.; Pérez-Carvajal, J.; Legrand, A.; Farrusseng, D.; Imaz, I.; Maspoch, D. Aqueous production of spherical Zr-MOF beads via continuous-flow spray-drying. Green Chem. 2018, 20, 873–878.

15

Ohara, H.; Yamamoto, S.; Kuzuhara, D.; Koganezawa, T.; Oikawa, H.; Mitsuishi, M. Layer-by-layer growth control of metal–organic framework thin films assembled on polymer films. ACS Appl. Mater. Interfaces 2020, 12, 50784–50792.

16

Al-Rowail, F. N.; Jamal, A.; Ba Shammakh, M. S.; Rana, A. A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal–organic framework (MOF) and non–MOF catalysts: Challenges and future prospects. ACS Sustainable Chem. Eng. 2018, 6, 15895–15914.

17

Zhou, S. Y.; Kong, X. Y.; Zheng, B.; Huo, F. W.; Strømme, M.; Xu, C. Cellulose nanofiber @ conductive metal–organic frameworks for high-performance flexible supercapacitors. ACS Nano 2019, 13, 9578–9586.

18

Kim, S.; Shamsaei, E.; Lin, X. C.; Hu, Y. X.; Simon, G. P.; Seong, J. G.; Kim, J. S.; Lee, W. H.; Lee, Y. M.; Wang, H. T. The enhanced hydrogen separation performance of mixed matrix membranes by incorporation of two-dimensional ZIF-L into polyimide containing hydroxyl group. J. Membr. Sci. 2018, 549, 260–266.

19

Shang, Z.; An, X. Y.; Liu, L. Q.; Yang, J.; Zhang, W.; Dai, H. Q.; Cao, H. B.; Xu, Q. L.; Liu, H. B.; Ni, Y. H. Chitin nanofibers as versatile bio-templates of zeolitic imidazolate frameworks for N-doped hierarchically porous carbon electrodes for supercapacitor. Carbohydr. Polym. 2021, 251, 117107.

20

Wang, Z. G.; Song, L.; Wang, Y. Q.; Zhang, X. F.; Hao, D. D.; Feng, Y.; Yao, J. F. Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications. Chem. Eng. J. 2019, 371, 138–144.

21

Zhu, H.; Yang, X.; Cranston, E. D.; Zhu, S. P. Flexible and porous nanocellulose aerogels with high loadings of metal–organic-framework particles for separations applications. Adv. Mater. 2016, 28, 7652–7657.

22

Li, Y. J.; Liu, H. O.; Wang, H. T.; Qiu, J. S.; Zhang, X. F. GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H2/CO2 separation. Chem. Sci. 2018, 9, 4132–4141.

23

Joshi, B.; Park, S.; Samuel, E.; Jo, H. S.; An, S.; Kim, M. W.; Swihart, M. T.; Yun, J. M.; Kim, K. H.; Yoon, S. S. Zeolitic imidazolate framework-7 textile-derived nanocomposite fibers as freestanding supercapacitor electrodes. J. Electroanal. Chem. 2018, 810, 239–247.

24

Peng, N.; Huang, D.; Gong, C.; Wang, Y. X.; Zhou, J. P.; Chang, C. Y. Controlled arrangement of nanocellulose in polymeric matrix: From reinforcement to functionality. ACS Nano 2020, 14, 16169–16179.

25

Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85.

26

Zhu, L. T.; Zong, L.; Wu, X. C.; Li, M. J.; Wang, H. S.; You, J.; Li, C. X. Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 2018, 12, 4462–4468.

27

Zou, J.; Wu, S. Q.; Chen, J.; Lei, X. J.; Li, Q. H.; Yu, H.; Tang, S.; Ye, D. D. Highly efficient and environmentally friendly fabrication of robust, programmable, and biocompatible anisotropic, all-cellulose, wrinkle-patterned hydrogels for cell alignment. Adv. Mater. 2019, 31, 1904762.

28

Sacui, I. A.; Nieuwendaal, R. C.; Burnett, D. J.; Stranick, S.; Jorf, M.; Weder, C.; Foste, E. J.; Olsson, R. T.; Gilman, J. W. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl. Mater. Interfaces 2014, 6, 6127–6138.

29

Zhu, C. T.; Soldatov, A.; Mathew, A. P. Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu (II) onto TEMPO-oxidized cellulose nanofibers. Nanoscale 2017, 9, 7419–7428.

30

Sun, Q. Q.; Yu, Z. B.; Jiang, R. H.; Hou, Y. P.; Sun, L.; Qian, L.; Li, F. Y.; Li, M. J.; Ran, Q.; Zhang, H. Q. CoP QD anchored carbon skeleton modified CdS nanorods as a co-catalyst for photocatalytic hydrogen production. Nanoscale 2020, 12, 19203–19212.

31

Li, Q. Q.; Renneckar, S. Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules 2011, 12, 650–659.

32

Zhou, K.; Mousavi, B.; Luo, Z. X.; Phatanasri, S.; Chaemchuen, S.; Verpoort, F. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A 2017, 5, 952–957.

33

Li, D. W.; Tian, X. J.; Wang, Z. Q.; Guan, Z.; Li, X. Q.; Qiao, H.; Ke, H. Z.; Luo, L.; Wei, Q. F. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 2020, 383, 123127.

34

Bulut, Y.; Aydın, H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 2006, 194, 259–267.

35

Li, Y. F.; Yan, X. L.; Hu, X. Y.; Feng, R.; Zhou, M. Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water. Chem. Eng. J. 2019, 375, 122003.

36

Zhang, H.; Shi, X. B.; Li, J. L.; Kumar, P.; Liu, B. Selective dye adsorption by zeolitic imidazolate framework-8 loaded UiO-66-NH2. Nanomaterials 2019, 9, 1283.

37

Ghosh, D.; Bhattacharyya, K. G. Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 2002, 20, 295–300.

38

Eftekhari, S.; Habibi-Yangjeh, A.; Sohrabnezhad, S. Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: Thermodynamic and kinetic studies. J. Hazard. Mater. 2010, 178, 349–355.

39

Selvam, P. P.; Preethi, S.; Basakaralingam, P.; Thinakaran, N.; Sivasamy, A.; Sivanesan, S. Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. J. Hazard. Mater. 2008, 155, 39–44.

40

Li, T. T.; Liu, Y. M.; Wang, T.; Wu, Y. L.; He, Y. L.; Yang, R.; Zheng, S. R. Regulation of the surface area and surface charge property of MOFs by multivariate strategy: Synthesis, characterization, selective dye adsorption and separation. Microporous Mesoporous Mater. 2018, 272, 101–108.

41

Ofomaja, A. E.; Ho, Y. S. Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. Dyes Pigm. 2007, 74, 60–66.

42

Cheung, W. H.; Szeto, Y. S.; McKay, G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 2007, 98, 2897–2904.

43

Mokhtar, A.; Abdelkrim, S.; Djelad, A.; Sardi, A.; Boukoussa, B.; Sassi, M.; Bengueddach, A. Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydr. Polym. 2020, 229, 115399.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 June 2021
Revised: 23 July 2021
Accepted: 14 August 2021
Published: 07 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110684), Foundation of Department of Education Guangdong Province (Nos. 2019KQNCX163 and 2020KTSCX155), Wuyi University-Hong Kong Joint Research Fund (No. 2019WGALH13), Guangdong Science and Technology Major Special Fund (No. 2019-252), and the National Natural Science Foundation of China (No. 52103124).

Return