Journal Home > Volume 15 , Issue 3

Sub-nanometer armchair graphene nanoribbons (GNRs) with moderate band gap have great potential towards novel nanodevices. GNRs can be synthesized in the confined tubular space of single-walled carbon nanotubes (SWCNTs), in which precursor molecules have been specifically designed to form the GNRs with certain width and edge. However, it is still unexplored how the diameter and metallicity of SWCNTs influence the synthesis of the GNRs. Herein, we applied a series of SWCNTs with different average diameters to study the diameter-dependent synthesis of GNRs. By using Raman spectroscopy and transmission electron microscopy, we found that the width of the GNRs can be tailored by the diameter of the SWCNTs. Especially, the SWCNTs with average diameter of 1.3 nm produced 6 and 7 armchair GNRs with the highest yield, which can be well explained by considering the width of the GNRs and van der Waals radius of hydrogen and carbon atoms. In addition, semiconducting and metallic SWCNTs produced GNRs with different yields, which could attribute to different diameter distributions and density of defects. These results enable the possibility of a high-yield production of certain armchair graphene nanoribbons in large scale, which would benefit future applications as semiconductor with sub-nanometer in width.


menu
Abstract
Full text
Outline
About this article

Carbon nanotube-dependent synthesis of armchair graphene nanoribbons

Show Author's information Yifan Zhang1Kecheng Cao2,3Takeshi Saito4Hiromichi Kataura4Hans Kuzmany5Thomas Pichler5Ute Kaiser2Guowei Yang1( )Lei Shi1( )
State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
Central Facility for Electron Microscopy, Electron Microscopy Group of Materials Science, Ulm University, Ulm 89081, Germany
School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan
Faculty of Physics, University of Vienna, Vienna 1090-A, Austria

Abstract

Sub-nanometer armchair graphene nanoribbons (GNRs) with moderate band gap have great potential towards novel nanodevices. GNRs can be synthesized in the confined tubular space of single-walled carbon nanotubes (SWCNTs), in which precursor molecules have been specifically designed to form the GNRs with certain width and edge. However, it is still unexplored how the diameter and metallicity of SWCNTs influence the synthesis of the GNRs. Herein, we applied a series of SWCNTs with different average diameters to study the diameter-dependent synthesis of GNRs. By using Raman spectroscopy and transmission electron microscopy, we found that the width of the GNRs can be tailored by the diameter of the SWCNTs. Especially, the SWCNTs with average diameter of 1.3 nm produced 6 and 7 armchair GNRs with the highest yield, which can be well explained by considering the width of the GNRs and van der Waals radius of hydrogen and carbon atoms. In addition, semiconducting and metallic SWCNTs produced GNRs with different yields, which could attribute to different diameter distributions and density of defects. These results enable the possibility of a high-yield production of certain armchair graphene nanoribbons in large scale, which would benefit future applications as semiconductor with sub-nanometer in width.

Keywords: Raman spectroscopy, single-walled carbon nanotubes, armchair graphene nanoribbons, diameter dependence, metallicity dependence

References(35)

1

Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

2

Dutta, S.; Pati, S. K. Novel properties of graphene nanoribbons: A review. J. Mater. Chem. 2010, 20, 8207–8223.

3

Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

4

Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphene nanomesh. Nat. Nanotechnol. 2010, 5, 190–194.

5

Kim, M.; Safron, N. S.; Han, E.; Arnold, M. S.; Gopalan, P. Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 2010, 10, 1125–1131.

6

Ma, B. J.; Ren, S. Z.; Wang, P. Q.; Jia, C. C.; Guo, X. F. Precise control of graphene etching by remote hydrogen plasma. Nano Res. 2019, 12, 137–142.

7

Narita, A.; Verzhbitskiy, I. A.; Frederickx, W.; Mali, K. S.; Jensen, S. A.; Hansen, M. R.; Bonn, M.; De Feyter, S.; Casiraghi, C.; Feng, X. L. et al. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. ACS Nano 2014, 8, 11622–11630.

8

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

9

Liu, X. M.; Li, G.; Lipatov, A.; Sun, T. Pour, M. M.; Aluru, N. R.; Lyding, J. W.; Sinitskii, A. Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization. Nano Res. 2020, 13, 1713–1722.

10

Xu, X. S.; Di Giovannantonio, M.; Urgel, J. I.; Pignedoli, C. A.; Ruffieux, P.; Müllen, K.; Fasel, R. Narita, A. On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons. Nano Res. 2021.

11

Shi, L.; Rohringer, P.; Suenaga, K.; Niimi, Y.; Kotakoski, J.; Meyer, J. C.; Peterlik, H.; Wanko, M.; Cahangirov, S.; Rubio, A. et al. Confined linear carbon chains as a route to bulk carbyne. Nat. Mater. 2016, 15, 634–639.

12

Shi, L.; Senga, R.; Suenaga, K.; Kataura, H.; Saito, T.; Paz, A. P.; Rubio, A.; Ayala, P.; Pichler, T. Toward confined carbyne with tailored properties. Nano Lett. 2021, 21, 1096–1101.

13

Shi, L.; Sheng, L. M.; Yu, L. M.; An, K.; Ando, Y.; Zhao, X. L. Ultra-thin double-walled carbon nanotubes: A novel nanocontainer for preparing atomic wires. Nano Res. 2011, 4, 759–766.

14

Fujimori, T.; Morelos-Gómez, A.; Zhu, Z.; Muramatsu, H.; Futamura, R.; Urita, K.; Terrones, M.; Hayashi, T.; Endo, M.; Hong, S. Y. et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 2013, 4, 2162.

15

Li, Y. L.; Bai, H. C.; Li, L. W.; Huang, Y. H. Stabilities and electronic properties of nanowires made of single atomic sulfur chains encapsulated in zigzag carbon nanotubes. Nanotechnology 2018, 29, 415703.

16

Guan, L. H.; Suenaga, K.; Okubo, S.; Okazaki, T.; Iijima, S. Metallic wires of lanthanum atoms inside carbon nanotubes. J. Am. Chem. Soc. 2008, 130, 2162–2163.

17

Senga, R.; Komsa, H.; Liu, Z.; Hirose-Takai, K.; Krasheninnikov, A. V.; Suenaga, K. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes. Nat. Mater. 2014, 13, 1050–1054.

18

Meyer, R. R.; Sloan, J.; Dunin-Borkowski, R. E.; Kirkland, A. I.; Novotny, M. C.; Bailey, S. R.; Hutchison, J. L.; Green, M. L. H. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 2000, 289, 1324–1326.

19

Sloan, J.; Kirkland, A. I.; Hutchison, J. L.; Green, M. L. H. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem. Commun. 2002, 13, 1319–1332.

20

Anoshkin, I. V.; Talyzin, A. V.; Nasibulin, A. G.; Krasheninnikov, A. V.; Jiang, H.; Nieminen, R. M.; Kauppinen, E. I. Coronene encapsulation in single-walled carbon nanotubes: Stacked columns, peapods, and nanoribbons. ChemPhysChem 2014, 15, 1660–1665.

21

Chamberlain, T. W.; Biskupek, J.; Rance, G. A.; Chuvilin, A.; Alexander, T. J.; Bichoutskaia, E.; Kaiser, U.; Khlobystov, A. N. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano 2012, 6, 3943–3953.

22

Talyzin, A. V.; Anoshkin, I. V.; Krasheninnikov, A. V.; Nieminen, R. M.; Nasibulin, A. G.; Jiang, H.; Kauppinen, E. I. Synthesis of graphene nanoribbons encapsulated in single-walled carbon nanotubes. Nano Lett. 2011, 11, 4352–4356.

23

Kuzmany, H.; Shi, L.; Kürti, J.; Koltai, J.; Chuvilin, A.; Saito, T.; Pichler, T. The growth of new extended carbon nanophases from ferrocene inside single-walled carbon nanotubes. Phys. Status Solidi RRL 2017, 11, 1700158.

24

Chernov, A. I.; Fedotov, P. V.; Talyzin, A. V.; Lopez, I. S.; Anoshkin, I. V.; Nasibulin, A. G.; Kauppinen, E. I.; Obraztsova, E. D. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes. ACS Nano 2013, 7, 6346–6353.

25

Kuzmany, H.; Shi, L.; Martinati, M.; Cambré, S.; Wenseleers, W.; Kürti, J.; Koltai, J.; Kukucska, G.; Cao, K. C.; Kaiser, U. et al. Well-defined sub-nanometer graphene ribbons synthesized inside carbon nanotubes. Carbon 2021, 171, 221–229.

26

Liu, Y.; Jones, R. O.; Zhao, X. L.; Ando, Y. Carbon species confined inside carbon nanotubes: A density functional study. Phys. Rev. B 2003, 68, 125413.

27

Saito, T.; Ohshima, S.; Okazaki, T.; Ohmori, S.; Yumura, M.; Iijima, S. Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J. Nanosci. Nanotechnol. 2008, 8, 6153–6157.

28

Wang, G. W.; Wei, X. J.; Tanaka, T.; Kataura, H. Diameter-selective separation of semiconducting single-walled carbon nanotubes in large diameter range. Phys. Status Solidi B 2017, 254, 1700294.

29

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

30

Filho, A. G. S.; Jorio, A.; Samsonidze, G. G.; Dresselhaus, G.; Pimenta, M. A.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Saito, R. Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Phys. Rev. B 2003, 67, 035427.

31

Vandescuren, M.; Hermet, P.; Meunier, V.; Henrard, L.; Lambin, P. Theoretical study of the vibrational edge modes in graphene nanoribbons. Phys. Rev. B 2008, 78, 195401.

32

Gillen, R.; Mohr, M.; Thomsen, C.; Maultzsch, J. Vibrational properties of graphene nanoribbons by first-principles calculations. Phys. Rev. B 2009, 80, 155418.

33

Saito, R.; Furukawa, M.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectra of graphene ribbons. J. Phys.: Condens. Matter 2010, 22, 334203.

34

Cancado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Dantas, M. S. S.; Jorio, A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 2004, 93, 247401.

35

Kempa, K. Gapless plasmons in carbon nanotubes and their interactions with phonons. Phys. Rev. B 2002, 66, 195406.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 July 2021
Revised: 04 August 2021
Accepted: 12 August 2021
Published: 16 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51902353), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011227), and Science and Technology Innovation Strategy Special Fund of Guangdong Province (No. pdjh2020(b)0018) and State Key Laboratory of Optoelectronic Materials and Technologies (No. OEMT-2021-PZ-02). U. K. acknowledges the support of the Graphene Flagship and DFG SPP Graphene as well as the DFG and the Ministry of Science, Research and the Arts (MWK) of Baden-Wuerttemberg within the frame of the SALVE project.

Return