Journal Home > Volume 15 , Issue 3

Nanomedicine with high specificity has been a promising tool for cancer diagnosis and therapy. However, the successful application of nanoparticle-based superficial cancer therapy is severely hindered by restricted deep tumor tissue accumulation and penetration. Herein, a self-assembly nanomicelle dissolving microneedle (DMN) patch according to the “nano in micro” strategy was conducted to co-deliver a first-line chemotherapeutic agent paclitaxel (PTX), and a photosensitizer IR780 (PTX/IR780-NMs @DMNs) for chemo-photothermal synergetic melanoma therapy. Upon direct insertion into the tumor site, DMNs created a regular and multipoint three-dimensional drug depot to maximize the tumor accumulation. Accompanied by the DMN dissolution, the composition of the needle matrixes self-assembled into nanomicelles, which could efficiently penetrate deep tumor tissue. Upon laser irradiation, the nanomicelles could not only ablate tumor cells directly by photothermal conversion but also trigger PTX release to induce tumor cell apoptosis. In vivo results showed that compared with intravenous injection, IR780 delivered by PTX/IR780-NMs @DMNs was almost completely accumulated at the tumor site. The antitumor results revealed that the PTX/IR780-NMs @DMNs could effectively eliminate tumors with an 88% curable rate without any damage to normal tissues. This work provides a versatile and generalizable framework for designing self-assembly DMN-mediated combination therapy to fight against superficial cancer.


menu
Abstract
Full text
Outline
About this article

Self-assembly nanomicelle-microneedle patches with enhanced tumor penetration for superior chemo-photothermal therapy

Show Author's information Ying Sun1,§Minglong Chen1,4,§Dan Yang2Wanbing Qin3Guilan Quan2( )Chuanbin Wu2Xin Pan1 ( )
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
College of Pharmacy, Jinan University, Guangzhou 510632, China
Jieyang Affiliated Hospital, Sun Yat-Sen University, Guangzhou 522091, China
Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China

§ Ying Sun and Minglong Chen contributed equally to this work.

Abstract

Nanomedicine with high specificity has been a promising tool for cancer diagnosis and therapy. However, the successful application of nanoparticle-based superficial cancer therapy is severely hindered by restricted deep tumor tissue accumulation and penetration. Herein, a self-assembly nanomicelle dissolving microneedle (DMN) patch according to the “nano in micro” strategy was conducted to co-deliver a first-line chemotherapeutic agent paclitaxel (PTX), and a photosensitizer IR780 (PTX/IR780-NMs @DMNs) for chemo-photothermal synergetic melanoma therapy. Upon direct insertion into the tumor site, DMNs created a regular and multipoint three-dimensional drug depot to maximize the tumor accumulation. Accompanied by the DMN dissolution, the composition of the needle matrixes self-assembled into nanomicelles, which could efficiently penetrate deep tumor tissue. Upon laser irradiation, the nanomicelles could not only ablate tumor cells directly by photothermal conversion but also trigger PTX release to induce tumor cell apoptosis. In vivo results showed that compared with intravenous injection, IR780 delivered by PTX/IR780-NMs @DMNs was almost completely accumulated at the tumor site. The antitumor results revealed that the PTX/IR780-NMs @DMNs could effectively eliminate tumors with an 88% curable rate without any damage to normal tissues. This work provides a versatile and generalizable framework for designing self-assembly DMN-mediated combination therapy to fight against superficial cancer.

Keywords: tumor penetration, chemo-photothermal therapy, dissolving microneedle, nanomicelle, superficial tumor

References(42)

1
Pires, L. R.; Gaspar, J. Micro and nano-needles as innovative approach in nanomedicine. In Nanostructured Biomaterials for Regenerative Medicine. Guarino, V; Iafisco, M; Spriano, S., Eds.; Woodhead Publishing Ltd: Oxford, 2020; pp 379–406.
2

Yuan, A.; Qiu, X. F.; Tang, X. L.; Liu, W.; Wu, J. H.; Hu, Y. Q. Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy. Biomaterials 2015, 51, 184–193.

3

Shu, M.; Tang, J. J.; Chen, L. L.; Zeng, Q.; Li, C.; Xiao, S. T.; Jiang, Z. Z.; Liu, J. Tumor microenvironment triple-responsive nanoparticles enable enhanced tumor penetration and synergetic chemo-photodynamic therapy. Biomaterials 2020, 268, 120574.

4

Zhang, Y. R.; Lin, R.; Li, H. J.; He, W. L.; Du, J. Z.; Wang, J. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1519.

5

Cong, Z. Q.; Zhang, L.; Ma, S. Q.; Lam, K. S.; Yang, F. F.; Liao, Y. H. Size-transformable hyaluronan stacked self-assembling peptide nanoparticles for improved transcellular tumor penetration and photo-chemo combination therapy. ACS Nano 2020, 14, 1958–1970.

6

Cong, Z. Q.; Yang, F. F.; Cao, L.; Wen, H.; Fu, T. T.; Ma, S. Q.; Liu, C. Y.; Quan, L. H.; Liao, Y. H. Multispectral optoacoustic tomography (MSOT) for imaging the particle size-dependent intratumoral distribution of polymeric micelles. Int. J. Nanomedicine 2018, 13, 8549–8560.

7

Chen, H. M.; Zhang, W. Z.; Zhu, G. Z.; Xie, J.; Chen, X. Y. Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2017, 2, 17024.

8

Jiang, T. Y.; Wang, T.; Li, T.; Ma, Y. D.; Shen, S. Y.; He, B. F.; Mo, R. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano 2018, 12, 9693–9701.

9

Kim, N. W.; Kim, S. Y.; Lee, J. E.; Yin, Y.; Lee, J. H.; Lim, S. Y.; Kim, E. S.; Duong, H. T. T.; Kim, H. K.; Kim, S. et al. Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano 2018, 12, 9702–9713.

10

Pei, P.; Yang, F.; Liu, J. X.; Hu, H. R.; Du, X. Y.; Hanagata, N.; Zhao, S. C.; Zhu, Y. F. Composite-dissolving microneedle patches for chemotherapy and photothermal therapy in superficial tumor treatment. Biomater. Sci. 2018, 6, 1414–1423.

11

Boopathy, A. V.; Mandal, A.; Kulp, D. W.; Menis, S.; Bennett, N. R.; Watkins, H. C.; Wang, W. D.; Martin, J. T.; Thai, N. T.; He, Y. P. et al. Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination. Proc. Natl. Acad. Sci. USA 2019, 116, 16473–16478.

12

Waghule, T.; Singhvi, G.; Dubey, S. K.; Pandey, M. M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258.

13

Li, W. T.; Peng, J. R.; Yang, Q.; Chen, L. J.; Zhang, L.; Chen, X. X.; Qian, Z. Y. α-Lipoic acid stabilized DTX/IR780 micelles for photoacoustic/fluorescence imaging guided photothermal therapy/chemotherapy of breast cancer. Biomater. Sci. 2018, 6, 1201–1216.

14

Deng, Y. Y.; Käfer, F.; Chen, T. T.; Jin, Q.; Ji, J.; Agarwal, S. Let there be light: Polymeric micelles with upper critical solution temperature as light-triggered heat nanogenerators for combating drug-resistant cancer. Small 2018, 14, 1802420.

15

DeMuth, P. C.; Min, Y.; Irvine, D. J.; Hammond, P. T. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv. Healthc. Mater. 2014, 3, 47–58.

16

DeMuth, P. C.; Moon, J. J.; Suh, H.; Hammond, P. T.; Irvine, D. J. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 2012, 6, 8041–8051.

17

Chen, C. H.; Shyu, V. B. H.; Chen, C. T. Dissolving microneedle patches for transdermal insulin delivery in diabetic mice: Potential for clinical applications. Materials (Basel) 2018, 611, 1625.

18

Chen, G. J.; Yu, J. C.; Gu, Z. Glucose-responsive microneedle patches for diabetes treatment. J. Diabetes Sci. Technol. 2019, 13, 41–48.

19

Lee, I. C.; Lin, W. M.; Shu, J. C.; Tsai, S. W.; Chen, C. H.; Tsai, M. T. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice. J. Biomed. Mater. Res. Part A 2017, 105, 84–93.

20

Tham, H. P.; Xu, K. M.; Lim, W. Q.; Chen, H. Z.; Zheng, M. J.; Thng, T. G. S.; Venkatraman, S. S.; Xu, C. J.; Zhao, Y. L. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano 2018, 12, 11936–11948.

21

Yang, P. P.; Lu, C.; Qin, W. B.; Chen, M. L.; Quan, G. L.; Liu, H.; Wang, L. L.; Bai, X. Q.; Pan, X.; Wu, C. B. Construction of a core-shell microneedle system to achieve targeted co-delivery of checkpoint inhibitors for melanoma immunotherapy. Acta Biomater. 2020, 104, 147–157.

22

Wu, B. Y.; Fu, J. T.; Zhou, Y. X.; Luo, S. L.; Zhao, Y. T.; Quan, G. L.; Pan, X.; Wu, C. B. Tailored core-shell dual metal-organic frameworks as a versatile nanomotor for effective synergistic antitumor therapy. Acta Pharm. Sin. B 2020, 10, 2198–2211.

23

Wang, B.; Wu, S.; Lin, Z.; Jiang, Y.; Chen, Y.; Chen, Z. S.; Yang, X.; Gao, W. A personalized and long-acting local therapeutic platform combining photothermal therapy and chemotherapy for the treatment of multidrug-resistant colon tumor. Int. J. Nanomedicine 2018, 13, 8411–8427.

24

Moreira, A. F.; Rodrigues, C. F.; Jacinto, T. A.; Miguel, S. P.; Costa, E. C.; Correia, I. J. Poly(vinyl alcohol)/chitosan layer-by-layer microneedles for cancer chemo-photothermal therapy. Int. J. Pharm. 2020, 576, 118907.

25

Yuan, X.; Yin, Y. L.; Zan, W.; Sun, X. Y.; Yang, Q. Hybrid manganese dioxide-bovine serum albumin nanostructure incorporated with doxorubicin and IR780 for enhanced breast cancer chemo-photothermal therapy. Drug Deliv. 2019, 26, 1254–1264.

26

Zhang, L. H.; Qin, Y.; Zhang, Z. M.; Fan, F.; Huang, C. L.; Lu, L.; Wang, H.; Jin, X.; Zhao, H. X.; Kong, D. L. et al. Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy. Acta Biomater. 2018, 75, 371–385.

27

Qin, W. B.; Quan, G. L.; Sun, Y.; Chen, M. L.; Yang, P. P.; Feng, D. S.; Wen, T.; Hu, X. Y.; Pan, X.; Wu, C. B. Dissolving microneedles with spatiotemporally controlled pulsatile release nanosystem for synergistic chemo-photothermal therapy of melanoma. Theranostics 2020, 10, 8179–8196.

28

Zhao, D. J.; Zhang, H. Y.; Yang, S. F.; He, W. X.; Luan, Y. X. Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: An efficient drug delivery system for overcoming multidrug resistance. Int. J. Pharm. 2016, 515, 281–292.

29

Alves, C. G.; Lima-Sousa, R.; de Melo-Diogo, D.; Louro, R. O.; Correia, I. J. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. Int. J. Pharm. 2018, 542, 164–175.

30

Bernabeu, E.; Gonzalez, L.; Cagel, M.; Gergic, E. P.; Moretton, M. A.; Chiappetta, D. A. Novel Soluplus®-TPGS mixed micelles for encapsulation of paclitaxel with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines. Colloids Surf. B: Biointerfaces 2016, 140, 403–411.

31

Jin, X.; Zhou, B.; Xue, L. Z.; San, W. G. Soluplus® micelles as a potential drug delivery system for reversal of resistant tumor. Biomed. Pharmacother. 2015, 69, 388–395.

32

Pinto, J. M. O.; Rengifo, A. F. C.; Mendes, C.; Leão, A. F.; Parize, A. L.; Stulzer, H. K. Understanding the interaction between Soluplus®and biorelevant media components. Colloids Surf. B: Biointerfaces 2020, 187, 110673.

33

Zhu, C. L.; Gong, S.; Ding, J. S.; Yu, M. R.; Ahmad, E.; Feng, Y.; Gan, Y. Supersaturated polymeric micelles for oral silybin delivery: The role of the Soluplus-PVPVA complex. Acta Pharm. Sin. B 2019, 9, 107–117.

34

Chen, M. L.; Yang, D.; Sun, Y.; Liu, T.; Wang, W. H.; Fu, J. T.; Wang, Q. Q.; Bai, X. Q.; Quan, G. L.; Pan, X.; Wu, C. B. In situ self-assembly nanomicelle microneedles for enhanced photoimmunotherapy via autophagy regulation strategy. ACS Nano 2021, 15, 3387–3401.

35

Tang, H. M.; Kobayashi, H.; Niidome, Y.; Mori, T.; Katayama, Y.; Niidome, T. CW/pulsed NIR irradiation of gold nanorods: Effect on transdermal protein delivery mediated by photothermal ablation. J. Control. Release 2013, 171, 178–183.

36

Pais-Silva, C.; de Melo-Diogo, D.; Correia, I. J. IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. Eur. J. Pharm. Biopharm. 2017, 113, 108–117.

37

Jiang, C. X.; Cheng, H.; Yuan, A. H.; Tang, X. L.; Wu, J. H.; Hu, Y. Q. Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater. 2015, 14, 61–69.

38

Tan, Y. N.; Zhu, Y.; Wen, L. J.; Yang, X. Q.; Liu, X.; Meng, T. T.; Dai, S. H.; Ping, Y.; Yuan, H.; Hu, F. Q. Mitochondria-responsive drug release along with heat shock mediated by multifunctional glycolipid micelles for precise cancer chemo-phototherapy. Theranostics 2019, 9, 691–707.

39

Burke, P. J. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 2017, 3, 857–870.

40

Zhang, J. F.; Fang, F.; Liu, B.; Tan, J. H.; Chen, W. C.; Zhu, Z. L.; Yuan, Y.; Wan, Y. P.; Cui, X.; Li, S. L. et al. Intrinsically cancer-mitochondria-targeted thermally activated delayed fluorescence nanoparticles for two-photon-activated fluorescence imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 41051–41061.

41

Lin, S. Q.; Quan, G. L.; Hou, A. L.; Yang, P. P.; Peng, T. T.; Gu, Y. K.; Qin, W. B.; Liu, R. B.; Ma, X. Y.; Pan, X. et al. Strategy for hypertrophic SCAR therapy: Improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J. Control. Release 2019, 306, 69–82.

42

Coral, D. F.; Soto, P. A.; Blank, V.; Veiga, A.; Spinelli, E.; Gonzalez, S.; Saracco, G. P.; Bab, M. A.; Muraca, D.; Setton-Avruj, P. C. et al. Nanoclusters of crystallographically aligned nanoparticles for magnetic thermotherapy: Aqueous ferrofluid, agarose phantoms and ex vivo melanoma tumour assessment. Nanoscale 2018, 10, 21262–21274.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 June 2021
Revised: 10 August 2021
Accepted: 12 August 2021
Published: 25 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81803466), the Key Areas Research and Development Program of Guangdong Province (No. 2019B020204002), and the Natural Science Foundation of Guangdong Province (No. 2021A1515012525).

Return