Journal Home > Volume 15 , Issue 3

Atomically dispersed metals stabilized by nitrogen elements in carbon skeleton hold great promise as alternatives for Pt-based catalysts towards oxygen reduction reaction in proton exchange membrane fuel cells. However, their widespread commercial applications are limited by complicated synthetic procedures for mass production. Herein, we are proposing a simple, green mechanochemical approach to synthesize zeolitic imidazolate frameworks precursors for the production of atomically dispersed “Fe-N4” sites in holey carbon nanosheets on a large scale. The thin porous carbon nanosheets (PCNs) with atomically dispersed “Fe-N4” moieties can be prepared in hectogram scale by directly pyrolysis of salt-sealed Fe-based zeolitic imidazolate framework-8 (Fe-ZIF-8@NaCl) precursors. The PCNs possess large specific surface area, abundant lamellar edges and rich “Fe-N4” active sites, and show superior catalytic activity towards oxygen reduction reaction in an acid electrolyte. This work provides a promising approach to cost-effective production of atomically dispersed transition metal catalysts on large scale for practical applications.


menu
Abstract
Full text
Outline
About this article

Large-scale production of holey carbon nanosheets implanted with atomically dispersed Fe sites for boosting oxygen reduction electrocatalysis

Show Author's information Xuanni Lin1,2Lei Shi1,2Feng Liu1,2Changcheng Jiang1Junjie Mao3( )Chuangang Hu1( )Dong Liu1( )
State Key Laboratory of Organic-Inorganic Composites, Center for Soft Matter Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241002, China

Abstract

Atomically dispersed metals stabilized by nitrogen elements in carbon skeleton hold great promise as alternatives for Pt-based catalysts towards oxygen reduction reaction in proton exchange membrane fuel cells. However, their widespread commercial applications are limited by complicated synthetic procedures for mass production. Herein, we are proposing a simple, green mechanochemical approach to synthesize zeolitic imidazolate frameworks precursors for the production of atomically dispersed “Fe-N4” sites in holey carbon nanosheets on a large scale. The thin porous carbon nanosheets (PCNs) with atomically dispersed “Fe-N4” moieties can be prepared in hectogram scale by directly pyrolysis of salt-sealed Fe-based zeolitic imidazolate framework-8 (Fe-ZIF-8@NaCl) precursors. The PCNs possess large specific surface area, abundant lamellar edges and rich “Fe-N4” active sites, and show superior catalytic activity towards oxygen reduction reaction in an acid electrolyte. This work provides a promising approach to cost-effective production of atomically dispersed transition metal catalysts on large scale for practical applications.

Keywords: fuel cells, oxygen reduction reaction, scalable synthesis, mechanochemical approach, atomically dispersed Fe sites

References(60)

1

Chen, L. Y.; Liu, X. F.; Zheng, L. R.; Li, Y. C.; Guo, X.; Wan, X.; Liu, Q. T.; Shang, J. X.; Shui, J. L. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Appl. Catal. B: Environ. 2019, 256, 117849.

2

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

3

Douka, A. I.; Xu, Y. Y.; Yang, H.; Zaman, S.; Yan, Y.; Liu, H. F.; Salam, M. A.; Xia, B. Y. A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries. Adv. Mater. 2020, 32, 2002170.

4

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

5

Qiu, H. J.; Du, P.; Hu, K. L.; Gao, J. J.; Li, H. L.; Liu, P.; Ina, T.; Ohara, K.; Ito, Y.; Chen, M. W. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 2019, 31, 1900843.

6

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

7

Han, J. X.; Meng, X. Y.; Lu, L.; Bian, J. J.; Li, Z. P.; Sun, C. W. Single‐atom Fe‐Nx‐C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 2019, 29, 1808872.

8

Shui, J. L.; Wang, M.; Du, F.; Dai, L. M. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 2015, 1, e1400129.

9

Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484.

10

Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

11

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

12

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

13

Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

14

Zhang, H. G.; Chung, H. T.; Cullen, D. A.; Wagner, S.; Kramm, U. I.; More, K. L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548–2558.

15

Chen, H. R.; Shen, K.; Tan, Y. P.; Li, Y. W. Multishell hollow metal/nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties. ACS Nano 2019, 13, 7800–7810.

16

Qiao, M. F.; Wang, Y.; Wang, Q.; Hu, G. Z.; Mamat, X.; Zhang, S. S.; Wang, S. Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2020, 59, 2688–2694.

17

Wu, G.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H. G.; Wang, H. L.; Dai, L. M. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy 2016, 29, 83–110.

18

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y. E.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

19

Zhang, P. F.; Zhu, H. Y.; Dai, S. Porous carbon supports: Recent advances with various morphologies and compositions. ChemCatChem 2015, 7, 2788–2805.

20

Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. A.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.

21

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

22

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

23

Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980.

24

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

25

Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

26

Luo, E. G.; Wang, C.; Li, Y.; Wang, X.; Gong, L. Y.; Zhao, T.; Jin, Z.; Ge, J. J.; Liu, C. P.; Xing, W. Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors. Nano Res. 2020, 13, 2420–2426.

27

Liu, Q. T.; Liu, X. F.; Zheng, L. R.; Shui, J. L. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2018, 57, 1204–1208.

28

He, X. H.; Deng, Y. C.; Zhang, Y.; He, Q.; Xiao, D. Q.; Peng, M.; Zhao, Y.; Zhang, H.; Luo, R. C.; Gan, T. et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts. Cell Rep. Phys. Sci. 2020, 1, 100004.

29

Xia, W.; Tang, J.; Li, J. J.; Zhang, S. H.; Wu, K. C. W.; He, J. P.; Yamauchi, Y. Defect-rich graphene nanomesh produced by thermal exfoliation of metal-organic frameworks for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 13354–13359.

30

Wang, Y. Q.; Tao, L.; Xiao, Z. H.; Chen, R.; Jiang, Z. Q.; Wang, S. Y. 3D carbon electrocatalysts in situ constructed by defect-rich nanosheets and polyhedrons from NaCl-sealed zeolitic imidazolate frameworks. Adv. Funct. Mater. 2018, 28, 1705356.

31

Ma, L. T.; Chen, S. M.; Pei, Z. X.; Huang, Y.; Liang, G. J.; Mo, F. N.; Yang, Q.; Su, J.; Gao, Y. H.; Zapien, J. A. et al. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 2018, 12, 1949–1958.

32

Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.

33

Lian, C.; Wang, Z.; Lin, R.; Wang, D. S.; Chen, C.; Li, Y. D. An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties. Nano Res. 2017, 10, 3303–3313.

34

Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525–8529.

35

Wang, Z. Y.; Zhao, Z. J.; Baucom, J.; Wang, D.; Dai, L. M.; Chen, J. F. Nitrogen-doped graphene foam as a metal-free catalyst for reduction reactions under a high gravity field. Engineering 2020, 6, 680–687.

36

Yang, X. H.; Wang, Y. C.; Zhang, G. X.; Du, L.; Yang, L. J.; Markiewicz, M.; Choi, J. Y.; Chenitz, R.; Sun, S. H. SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. Appl. Catal. B: Environ. 2020, 264, 118523.

37

Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442–450.

38

Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.

39

Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

40

Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

41

Kwak, D. H.; Han, S. B.; Lee, Y. W.; Park, H. S.; Choi, I. A.; Ma, K. B.; Kim, M. C.; Kim, S. J.; Kim, D. H.; Sohn, J. I. et al. Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl. Catal. B: Environ. 2017, 203, 889–898.

42

Gao, J.; Wang, Y.; Wu, H. H.; Liu, X.; Wang, L. L.; Yu, Q. L.; Li, A. W.; Wang, H.; Song, C. Q.; Gao, Z. R. et al. Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 131, 15233–15241.

43

Shi, L.; Peng, P.; Xiang, Z. H. Controlled synthesis of porous nitrogen-doped carbon nanoshells for highly efficient oxygen reduction. React. Chem. Eng. 2018, 3, 238–243.

44

Kong, H.; Song, J.; Jang, J. One-step fabrication of magnetic γ-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties. Chem. Commun. 2010, 46, 6735–6737.

45

Hu, J. W.; Wu, D. Y.; Zhu, C.; Hao, C.; Xin, C. C.; Zhang, J. W.; Guo, J. Y.; Li, N. N.; Zhang, G. F.; Shi, Y. T. Melt-salt-assisted direct transformation of solid oxide into atomically dispersed FeN4 sites on nitrogen-doped porous carbon. Nano Energy 2020, 72, 104670.

46

Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

47

Sun, T. T.; Zhang, P. P.; Chen, W. X.; Wang, K.; Fu, X. Z.; Zheng, T. Y.; Jiang, J. Z. Single iron atoms coordinated to g-C3N4 on hierarchical porous N-doped carbon polyhedra as a high-performance electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2020, 56, 798–801.

48

Westre, T. E.; Kennepohl, P.; Dewitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. A multiplet analysis of Fe K-edge 1s→3d pre-edge features of iron complexes. J. Am. Chem. Soc. 1997, 119, 6297–6314.

49

Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

50

Ramaswamy, N.; Tylus, U.; Jia, Q. Y.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: Linking surface science to coordination chemistry. J. Am. Chem. Soc. 2013, 135, 15443–15449.

51

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

52

Liu, S. W.; Wang, M. Y.; Yang, X. X.; Shi, Q. R.; Qiao, Z.; Lucero, M.; Ma, Q.; More, K. L.; Cullen, D. A.; Feng, Z. X. et al. Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts. Angew. Chem., Int. Ed. 2020, 59, 21698–21705.

53

Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

54

Wang, Q.; Yang, Y. Q.; Sun, F. F.; Chen, G. B.; Wang, J.; Peng, L. S.; Chen, W. T.; Shang, L.; Zhao, J. Q.; Sun-Waterhouse, D. et al. Molten NaCl-assisted synthesis of porous Fe-N-C electrocatalysts with a high density of catalytically accessible FeN4 active sites and outstanding oxygen reduction reaction performance. Adv. Energy Mater. 2021, 11, 2100219.

55

Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S. G.; Qi, X. Q.; Wei, Z. D. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5414–5420.

56

Zhang, J. M.; He, J.; Zheng, H. Y.; Li, R.; Gou, X. L. N, S dual-doped carbon nanosheet networks with hierarchical porosity derived from biomass of Allium cepa as efficient catalysts for oxygen reduction and Zn-air batteries. J. Mater. Sci. 2020, 55, 7464–7476.

57

Huang, B. B.; Hu, X.; Liu, Y. C.; Qi, W.; Xie, Z. L. Biomolecule-derived N/S co-doped CNT-graphene hybrids exhibiting excellent electrochemical activities. J. Power Sources 2019, 413, 408–417.

58

Chen, W. M.; Xin, Q.; Sun, G. Q.; Wang, Q.; Mao, Q.; Su, H. D. The effect of carbon support treatment on the stability of Pt/C electrocatalysts. J. Power Sources 2008, 180, 199–204.

59

Springer, T. E.; Wilson, M. S.; Gottesfeld, S. Modeling and experimental diagnostics in polymer electrolyte fuel cells. J. Electrochem. Soc. 1993, 140, 3513–3526.

60

Guterman, V. E.; Belenov, S. V.; Alekseenko, A. A.; Lin, R.; Tabachkova, N. Y.; Safronenko, O. I. Activity and stability of Pt/C and Pt-Cu/C electrocatalysts. Electrocatalysis 2018, 9, 550–562.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 June 2021
Revised: 22 July 2021
Accepted: 12 August 2021
Published: 06 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was partly financially supported by the National Key Research and Development Program of China (No. 2017YFA0206500), the Key Program of National Natural Science Foundation of China (No. 51732002), National Natural Science Foundation of China (No. 21971002), the Fundamental Research Funds for the Central Universities (Nos. buctrc202118 and buctrc202007), and Distinguished Scientist Program at BUCT (No. buctylkxj02), Beijing Advanced Innovation Center for Soft Matter Science and Engineering.

Return