AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma

Preethi Bala Balakrishnan1Debbie K. Ledezma2Juliana Cano-Mejia1Jaclyn Andricovich2Erica Palmer3Vishal A. Patel4Patricia S. Latham5Eric S. Yvon1Alejandro Villagra3Rohan Fernandes1,2,6( )Elizabeth E. Sweeney3,6( )
GW Cancer Center, Department of Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
The Institute for Biomedical Sciences, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
GW Cancer Center, Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
Department of Dermatology & Oncology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
Department of Pathology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
ImmunoBlue, Bethesda, MD 20817, USA
Show Author Information

Graphical Abstract

Abstract

Despite the promise of immunotherapy such as the immune checkpoint inhibitors (ICIs) anti-PD-1 and anti-CTLA-4 for advanced melanoma, only 26%–52% of patients respond, and many experience grade III/IV immune-related adverse events. Motivated by the need for an effective therapy for patients non-responsive to clinically approved ICIs, we have developed a novel nanoimmunotherapy that combines locally administered Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) with systemically administered agonistic anti-CD137 monoclonal antibody therapy (aCD137). PBNP-PTT was administered at various thermal doses to melanoma cells in vitro, and was combined with aCD137 in vivo to test treatment effects on melanoma tumor progression, animal survival, immunological protection against tumor rechallenge, and hepatotoxicity. When administered at a melanoma-specific thermal dose, PBNP-PTT elicits immunogenic cell death (ICD) in melanoma cells and upregulates markers associated with antigen presentation and immune cell co-stimulation in vitro. Consequently, PBNP-PTT eliminates primary melanoma tumors in vivo, yielding long-term tumor-free survival. However, the antitumor immune effects generated by PBNP-PTT cannot eliminate secondary tumors, despite significantly slowing their growth. The addition of aCD137 enables significant abscopal efficacy and improvement of survival, functioning through activated dendritic cells and tumor-infiltrating CD8+ T cells, and generates CD4+ and CD8+ T cell memory that manifests in the rejection of tumor rechallenge, with no long-term hepatotoxicity. This study describes for the first time a novel and effective nanoimmunotherapy combination of PBNP-PTT with aCD137 mAb therapy for melanoma.

References

1
National Cancer Institute: Surveillance, Epidemiology, and End Results Program. SEER*Explorer[Online]. Washington: National Cancer Institute. https://seer.cancer.gov/explorer/ (accessed Sep 14, 2020).
2

Hodi, F. S.; O'Day, S. J.; McDermott, D. F.; Weber, R. W.; Sosman, J. A.; Haanen, J. B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J. C. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723.

3

Schadendorf, D.; Hodi, F. S.; Robert, C.; Weber, J. S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T. T.; Berman, D. M.; Wolchok, J. D. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 2015, 33, 1889–1894.

4

Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J. J.; Mortier, L.; Daud, A.; Carlino, M. S.; McNeil, C. M.; Lotem, M. et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): Post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019, 20, 1239–1251.

5

Robert, C.; Schachter, J.; Long, G. V.; Arance, A.; Grob, J. J.; Mortier, L.; Daud, A.; Carlino, M. S.; McNeil, C.; Lotem, M. et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015, 372, 2521–2532.

6

Weber, J. S.; D'Angelo, S. P.; Minor, D.; Hodi, F. S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N. I.; Miller, W. H. Jr.; Lao, C. D. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015, 16, 375–384.

7

Callahan, M. K.; Kluger, H.; Postow, M. A.; Segal, N. H.; Lesokhin, A.; Atkins, M. B.; Kirkwood, J. M.; Krishnan, S.; Bhore, R.; Horak, C. et al. Nivolumab plus ipilimumab in patients with advanced melanoma: Updated survival, response, and safety data in a phase I dose-escalation study. J. Clin. Oncol. 2018, 36, 391–398.

8

Postow, M. A.; Chesney, J.; Pavlick, A. C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G. P.; Meyer, N.; Giguere, J. K.; Agarwala, S. S. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 2015, 372, 2006–2017.

9

Larkin, J.; Chiarion–Sileni, V.; Gonzalez, R.; Grob, J. J.; Rutkowski, P.; Lao, C. D.; Cowey, C. L.; Schadendorf, D.; Wagstaff, J.; Dummer, R. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2019, 381, 1535–1546.

10

Naidoo, J.; Page, D. B.; Li, B. T.; Connell, L. C.; Schindler, K.; Lacouture, M. E.; Postow, M. A.; Wolchok, J. D. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 2015, 26, 2375–2391.

11

Michot, J. M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A. et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148.

12

Champiat, S.; Lambotte, O.; Barreau, E.; Belkhir, R.; Berdelou, A.; Carbonnel, F.; Cauquil, C.; Chanson, P.; Collins, M.; Durrbach, A. et al. Management of immune checkpoint blockade dysimmune toxicities: A collaborative position paper. Ann. Oncol. 2016, 27, 559–574.

13

Wang, D. Y.; Salem, J. E.; Cohen, J. V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S. L.; Das, S.; Beckermann, K. E.; Ha, L. et al. Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis. JAMA Oncol. 2018, 4, 1721–1728.

14

Mittler, R. S.; Foell, J.; McCausland, M.; Strahotin, S.; Niu, L. G.; Bapat, A.; Hewes, L. B. Anti-CD137 antibodies in the treatment of autoimmune disease and cancer. Immunol. Res. 2004, 29, 197–208.

15

Qi, X. Y.; Li, F. L.; Wu, Y.; Cheng, C.; Han, P.; Wang, J. Y.; Yang, X. M. Optimization of 4-1BB antibody for cancer immunotherapy by balancing agonistic strength with FcγR affinity. Nat. Commun. 2019, 10, 2141.

16

Shuford, W. W.; Klussman, K.; Tritchler, D. D.; Loo, D. T.; Chalupny, J.; Siadak, A. W.; Brown, T. J.; Emswiler, J.; Raecho, H.; Larsen, C. P. et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med. 1997, 186, 47–55.

17

Chu, D. T.; Bac, N. D.; Nguyen, K. H.; Le Bao Tien, N.; Van Thanh, V.; Nga, V. T.; Ngoc, V. T. N.; Dao, D. T. A.; Hoan, L. N.; Hung, N. P. et al. An update on anti-CD137 antibodies in immunotherapies for cancer. Int. J. Mol. Sci. 2019, 20, 1822.

18

Chester, C.; Ambulkar, S.; Kohrt, H. E. 4-1BB agonism: Adding the accelerator to cancer immunotherapy. Cancer Immunol. Immunother. 2016, 65, 1243–1248.

19

Segal, N. H.; He, A. R.; Doi, T.; Levy, R.; Bhatia, S.; Pishvaian, M. J.; Cesari, R.; Chen, Y.; Davis, C. B.; Huang, B. et al. Phase I study of single-agent utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer. Clin. Cancer Res. 2018, 24, 1816–1823.

20

Segal, N. H.; Logan, T. F.; Hodi, F. S.; McDermott, D.; Melero, I.; Hamid, O.; Schmidt, H.; Robert, C.; Chiarion–Sileni, V.; Ascierto, P. A. et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin. Cancer Res. 2017, 23, 1929–1936.

21

Chu, K. F.; Dupuy, D. E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014, 14, 199–208.

22

Cano–Mejia, J.; Bookstaver, M. L.; Sweeney, E. E.; Jewell, C. M.; Fernandes, R. Prussian blue nanoparticle-based antigenicity and adjuvanticity trigger robust antitumor immune responses against neuroblastoma. Biomater. Sci. 2019, 7, 1875–1887.

23

Cano–Mejia, J.; Burga, R. A.; Sweeney, E. E.; Fisher, J. P.; Bollard, C. M.; Sandler, A. D.; Cruz, C. R. Y.; Fernandes, R. Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomed.: Nanotechnol. Biol. Med. 2017, 13, 771–781.

24

Sweeney, E. E.; Cano–Mejia, J.; Fernandes, R. Photothermal therapy generates a thermal window of immunogenic cell death in neuroblastoma. Small 2018, 14, 1800678.

25

den Brok, M. H. M. G. M.; Sutmuller, R. P. M.; van der Voort, R.; Bennink, E. J.; Figdor, C. G.; Ruers, T. J. M.; Adema, G. J. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res. 2004, 64, 4024–4029.

26

Sabel, M. S.; Nehs, M. A.; Su, G.; Lowler, K. P.; Ferrara, J. L. M.; Chang, A. E. Immunologic response to cryoablation of breast cancer. Breast Cancer Res. Treat. 2005, 90, 97–104.

27

Wu, F.; Zhou, L.; Chen, W. R. Host antitumour immune responses to HIFU ablation. Int. J. Hyperther. 2007, 23, 165–171.

28

Kepp, O.; Senovilla, L.; Vitale, I.; Vacchelli, E.; Adjemian, S.; Agostinis, P.; Apetoh, L.; Aranda, F.; Barnaba, V.; Bloy, N. et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014, 3, e955691.

29

Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72.

30

Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A. B.; Chan, T. A.; Coukos, G.; Demaria, S.; Deutsch, E. et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 2020, 8, e000337.

31

Cano–Mejia, J.; Shukla, A.; Ledezma, D. K.; Palmer, E.; Villagra, A.; Fernandes, R. CpG-coated prussian blue nanoparticles–based photothermal therapy combined with anti-CTLA-4 immune checkpoint blockade triggers a robust abscopal effect against neuroblastoma. Transl. Oncol. 2020, 13, 100823.

32

Shukla, A.; Cano-Mejia, J.; Andricovich, J.; Burga, R. A.; Sweeney, E. E.; Fernandes, R. An engineered Prussian blue nanoparticles-based nanoimmunotherapy elicits robust and persistent immunological memory in a TH-MYCN neuroblastoma model. Adv. NanoBiomed Res. 2021, 1, 2100021.

33

Chester, C.; Sanmamed, M. F.; Wang, J.; Melero, I. Immunotherapy targeting 4-1BB: Mechanistic rationale, clinical results, and future strategies. Blood 2018, 131, 49–57.

34

Koya, R. C.; Mok, S.; Otte, N.; Blacketor, K. J.; Comin–Anduix, B.; Tumeh, P. C.; Minasyan, A.; Graham, N. A.; Graeber, T. G.; Chodon, T. et al. BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy. Cancer Res. 2012, 72, 3928–3937.

35

da Silva, I. P.; Wang, K. Y. X.; Wilmott, J. S.; Holst, J.; Carlino, M. S.; Park, J. J.; Quek, C.; Wongchenko, M.; Yan, Y. B.; Mann, G. et al. Distinct molecular profiles and immunotherapy treatment outcomes of V600E and V600K BRAF-mutant melanoma. Clin. Cancer Res. 2019, 25, 1272–1279.

36

Knight, D. A.; Ngiow, S. F.; Li, M.; Parmenter, T.; Mok, S.; Cass, A.; Haynes, N. M.; Kinross, K.; Yagita, H.; Koya, R. C. et al. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J. Clin. Invest. 2013, 123, 1371–1381.

37

Vojtech, J. M.; Cano–Mejia, J.; Dumont, M. F.; Sze, R. W.; Fernandes, R. Biofunctionalized prussian blue nanoparticles for multimodal molecular imaging applications. J. Vis. Exp. 2015, 28, e52621.

38

Sapareto, S. A.; Dewey, W. C. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol., Biol., Phys. 1984, 10, 787–800.

39

Bartkowiak, T.; Jaiswal, A. R.; Ager, C. R.; Chin, R.; Chen, C. H.; Budhani, P.; Ai, M. D.; Reilley, M. J.; Sebastian, M. M.; Hong, D. S. et al. Activation of 4-1BB on liver myeloid cells triggers hepatitis via an interleukin-27-dependent pathway. Clin. Cancer Res. 2018, 24, 1138–1151.

40

Cretella, D.; Digiacomo, G.; Giovannetti, E.; Cavazzoni, A. PTEN alterations as a potential mechanism for tumor cell escape from PD-1/PD-L1 inhibition. Cancers 2019, 11, 1318.

41

Paraiso, K. H. T.; Xiang, Y.; Rebecca, V. W.; Abel, E. V.; Chen, Y. A.; Munko, A. C.; Wood, E.; Fedorenko, I. V.; Sondak, V. K.; Anderson, A. R. A. et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 2011, 71, 2750–2760.

42

George, S.; Miao, D. N.; Demetri, G. D.; Adeegbe, D.; Rodig, S. J.; Shukla, S.; Lipschitz, M.; Amin-Mansour, A.; Raut, C. P.; Carter, S. L. et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 2017, 46, 197–204.

43

Borsig, L.; Wolf, M. J.; Roblek, M.; Lorentzen, A.; Heikenwalder, M. Inflammatory chemokines and metastasis–tracing the accessory. Oncogene 2014, 33, 3217–3224.

44

Zhang, J. M.; An, J. X. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37.

45

Grivennikov, S. I.; Greten, F. R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899.

46

Dupont, P. J.; Warrens, A. N. Fas ligand exerts its pro-inflammatory effects via neutrophil recruitment but not activation. Immunology 2007, 120, 133–139.

47

Ikutani, M.; Yanagibashi, T.; Ogasawara, M.; Tsuneyama, K.; Yamamoto, S.; Hattori, Y.; Kouro, T.; Itakura, A.; Nagai, Y.; Takaki, S. et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 2012, 188, 703–713.

48

Simson, L.; Ellyard, J. I.; Dent, L. A.; Matthaei, K. I.; Rothenberg, M. E.; Foster, P. S.; Smyth, M. J.; Parish, C. R. Regulation of carcinogenesis by IL-5 and CCL11: A potential role for eosinophils in tumor immune surveillance. J. Immunol. 2007, 178, 4222–4229.

49

Zaynagetdinov, R.; Sherrill, T. P.; Gleaves, L. A.; McLoed, A. G.; Saxon, J. A.; Habermann, A. C.; Connelly, L.; Dulek, D.; Peebles, R. S. Jr.; Fingleton, B. et al. Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment. Cancer Res. 2015, 75, 1624–1634.

50

Eskiocak, U.; Guzman, W.; Wolf, B.; Cummings, C.; Milling, L.; Wu, H. J.; Ophir, M.; Lambden, C.; Bakhru, P.; Gilmore, D. C. et al. Differentiated agonistic antibody targeting CD137 eradicates large tumors without hepatotoxicity. JCI Insight 2020, 5, e133647.

51

Fu, G. L.; Liu, W.; Feng, S. S.; Yue, X. L. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012, 48, 11567–11569.

52

Hoffman, H. A.; Chakrabarti, L.; Dumont, M. F.; Sandler, A. D.; Fernandes, R. Prussian blue nanoparticles for laser-induced photothermal therapy of tumors. RSC Adv. 2014, 4, 29729–29734.

53

Sweeney, E. E.; Burga, R. A.; Li, C. Y.; Zhu, Y.; Fernandes, R. Photothermal therapy improves the efficacy of a MEK inhibitor in neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Sci. Rep. 2016, 6, 37035.

54

Cheng, L.; Gong, H.; Zhu, W. W.; Liu, J. J.; Wang, X. Y.; Liu, G.; Liu, Z. PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 2014, 35, 9844–9852.

55

Gauttier, V.; Judor, J. P.; Le Guen, V.; Cany, J.; Ferry, N.; Conchon, S. Agonistic anti-CD137 antibody treatment leads to antitumor response in mice with liver cancer. Int. J. Cancer 2014, 135, 2857–2867.

56

Murillo, O.; Arina, A.; Hervas-Stubbs, S.; Gupta, A.; McCluskey, B.; Dubrot, J.; Palazón, A.; Azpilikueta, A.; Ochoa, M. C.; Alfaro, C. et al. Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma. Clin. Cancer Res. 2008, 14, 6895–6906.

57

Weigelin, B.; Bolaños, E.; Teijeira, A.; Martinez-Forero, I.; Labiano, S.; Azpilikueta, A.; Morales–Kastresana, A.; Quetglas, J. I.; Wagena, E.; Sánchez–Paulete, A. R. et al. Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proc. Natl. Acad. Sci. USA 2015, 112, 7551–7556.

58

Palazón, A.; Teijeira, A.; Martinez-Forero, I.; Hervás-Stubbs, S.; Roncal, C.; Peñuelas, I.; Dubrot, J.; Morales-Kastresana, A.; Pérez-Gracia, J. L.; Ochoa, M. C. et al. Agonist anti-CD137 mAb act on tumor endothelial cells to enhance recruitment of activated T lymphocytes. Cancer Res. 2011, 71, 801–811.

59

Zhang, Y.; Li, N.; Suh, H.; Irvine, D. J. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat. Commun. 2018, 9, 6.

60

Niu, L. G.; Strahotin, S.; Hewes, B.; Zhang, B. Y.; Zhang, Y. Y.; Archer, D.; Spencer, T.; Dillehay, D.; Kwon, B.; Chen, L. P. et al. Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in anti-CD137-treated mice. J. Immunol. 2007, 178, 4194–4213.

61

Huang, L. P.; Li, Y. N.; Du, Y. N.; Zhang, Y. Y.; Wang, X. X.; Ding, Y.; Yang, X. L.; Meng, F. L.; Tu, J. S.; Luo, L. et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 2019, 10, 4871.

62

Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.

63

Oft, M. IL-10: Master switch from tumor-promoting inflammation to antitumor immunity. Cancer Immunol. Res. 2014, 2, 194–199.

64

Emmerich, J.; Mumm, J. B.; Chan, I. H.; LaFace, D.; Truong, H.; McClanahan, T.; Gorman, D. M.; Oft, M. IL-10 directly activates and expands tumor-resident CD8+ T cells without De Novo infiltration from secondary lymphoid organs. Cancer Res. 2012, 72, 3570–3581.

65

Hogan, S. P.; Koskinen, A.; Matthaei, K. I.; Young, I. G.; Foster, P. S. Interleukin-5-producing CD4+ T cells play a pivotal role in aeroallergen-induced eosinophilia, bronchial hyperreactivity, and lung damage in mice. Am. J. Respir. Crit. Care Med. 1998, 157, 210–218.

66

Steuerwald, N. M.; Foureau, D. M.; Norton, H. J.; Zhou, J.; Parsons, J. C.; Chalasani, N.; Fontana, R. J.; Watkins, P. B.; Lee, W. M.; Reddy, K. R. et al. Profiles of serum cytokines in acute drug-induced liver injury and their prognostic significance. PLoS One 2013, 8, e81974.

67

Melero, I.; Hirschhorn-Cymerman, D.; Morales-Kastresana, A.; Sanmamed, M. F.; Wolchok, J. D. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin. Cancer Res. 2013, 19, 1044–1053.

68

Bartkowiak, T.; Curran, M. A. 4-1BB agonists: Multi-potent potentiators of tumor immunity. Front. Oncol. 2015, 5, 117.

69

Compte, M.; Harwood, S. L.; Muñoz, I. G.; Navarro, R.; Zonca, M.; Perez-Chacon, G.; Erce-Llamazares, A.; Merino, N.; Tapia-Galisteo, A.; Cuesta, A. M. et al. A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity. Nat. Commun. 2018, 9, 4809.

Nano Research
Pages 2300-2314
Cite this article:
Balakrishnan PB, Ledezma DK, Cano-Mejia J, et al. CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma. Nano Research, 2022, 15(3): 2300-2314. https://doi.org/10.1007/s12274-021-3813-1
Topics:

1059

Views

21

Crossref

22

Web of Science

21

Scopus

2

CSCD

Altmetrics

Received: 08 June 2021
Revised: 06 August 2021
Accepted: 12 August 2021
Published: 12 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return