Journal Home > Volume 15 , Issue 3

Nowadays, realizing miniaturized nonlinear optical (NLO) device is crucial to meet the growing needs in on-chip nanophotonics as well as compact integrated devices. The strong optical nonlinearities, ultrafast photoexcitation dynamics, available exciton effects as well as without lattice matching make two-dimensional (2D) layered materials potential candidates for integrated and nano-scale NLO devices. Herein, a novel and inversion symmetry broken 2D layered SnP2S6 with strong second-harmonic and third-harmonic response has been reported for the first time. The second-order susceptibility (χ(2)) of SnP2S6 flakes can reach up to 4.06 × 10−9 m·V−1 under 810 nm excitation wavelength, which is around 1–2 orders of magnitude higher than that of most reported 2D materials. In addition, the NLO response of 2D SnP2S6 can break through the limitation of odd/even layers and exhibit broadband spectral response. Moreover, since the second-harmonic signal is closely related to structure variation, the second-harmonic response in 2D SnP2S6 is extremely sensitive to polarization angle and temperature, which is beneficial to some specific applications. The excellent NLO response in 2D SnP2S6 provides a new arena for realizing miniaturized NLO devices in the future.


menu
Abstract
Full text
Outline
About this article

Inversion symmetry broken 2D SnP2S6 with strong nonlinear optical response

Show Author's information Yue Zhang1Fakun Wang1Xin Feng1Zongdong Sun1Jianwei Su1Mei Zhao1Shuzhe Wang1Xiaozong Hu2( )Tianyou Zhai1( )
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

Abstract

Nowadays, realizing miniaturized nonlinear optical (NLO) device is crucial to meet the growing needs in on-chip nanophotonics as well as compact integrated devices. The strong optical nonlinearities, ultrafast photoexcitation dynamics, available exciton effects as well as without lattice matching make two-dimensional (2D) layered materials potential candidates for integrated and nano-scale NLO devices. Herein, a novel and inversion symmetry broken 2D layered SnP2S6 with strong second-harmonic and third-harmonic response has been reported for the first time. The second-order susceptibility (χ(2)) of SnP2S6 flakes can reach up to 4.06 × 10−9 m·V−1 under 810 nm excitation wavelength, which is around 1–2 orders of magnitude higher than that of most reported 2D materials. In addition, the NLO response of 2D SnP2S6 can break through the limitation of odd/even layers and exhibit broadband spectral response. Moreover, since the second-harmonic signal is closely related to structure variation, the second-harmonic response in 2D SnP2S6 is extremely sensitive to polarization angle and temperature, which is beneficial to some specific applications. The excellent NLO response in 2D SnP2S6 provides a new arena for realizing miniaturized NLO devices in the future.

Keywords: nonlinear optics, second-harmonic generation, two-dimensional (2D) layered materials, SnP2S6, third-harmonic generation

References(59)

1

Autere, A.; Jussila, H.; Dai, Y. Y.; Wang, Y. D.; Lipsanen, H.; Sun, Z. P. Nonlinear optics with 2D layered materials. Adv. Mater. 2018, 30, 1705963.

2

Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838.

3

Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

4

Li, W.; Chen, B. G.; Meng, C.; Fang, W.; Xiao, Y.; Li, X. Y.; Hu, Z. F.; Xu, Y. X.; Tong, L. M.; Wang, H. Q. et al. Ultrafast all-optical graphene modulator. Nano Lett. 2014, 14, 955–959.

5

You, J. W.; Bongu, S. R.; Bao, Q.; Panoiu, N. C. Nonlinear optical properties and applications of 2D materials: Theoretical and experimental aspects. Nanophotonics 2018, 8, 63–97.

6

Wen, X. L.; Gong, Z. B.; Li, D. H. Nonlinear optics of two-dimensional transition metal dichalcogenides. InfoMat 2019, 1, 317–337.

7

Li, D. W.; Xiong, W.; Jiang, L. J.; Xiao, Z. Y.; Golgir, H. R.; Wang, M. M.; Huang, X.; Zhou, Y. S.; Lin, Z.; Song, J. F. et al. Multimodal nonlinear optical imaging of MoS2 and MoS2-based van der Waals heterostructures. ACS Nano 2016, 10, 3766–3775.

8

Dai, M. J.; Chen, H. Y.; Wang, F. K.; Hu, Y. X.; Wei, S.; Zhang, J.; Wang, Z. G.; Zhai, T. Y.; Hu, P. A. Robust piezo-phototronic effect in multilayer γ-InSe for high-performance self-powered flexible photodetectors. ACS Nano 2019, 13, 7291–7299.

9

Qian, Q. K.; Zu, R.; Ji, Q. Q.; Jung, G. S.; Zhang, K. Y.; Zhang, Y.; Buehler, M. J.; Kong, J.; Gopalan, V.; Huang, S. X. Chirality-dependent second harmonic generation of MoS2 nanoscroll with enhanced efficiency. ACS Nano 2020, 14, 13333–13342.

10

Heyn, C.; Klingbeil, M.; Strelow, C.; Stemmann, A.; Mendach, S.; Hansen, W. Single-dot spectroscopy of GaAs quantum dots fabricated by filling of self-assembled nanoholes. Nanoscale Res. Lett. 2010, 5, 1633.

11

Witzens, J.; Baehr-Jones, T.; Hochberg, M. On-chip OPOs. Nat. Photonics 2010, 4, 10–12.

12

Ngo, G. Q.; George, A.; Schock, R. T. K.; Tuniz, A.; Najafidehaghani, E.; Gan, Z. Y.; Geib, N. C.; Bucher, T.; Knopf, H.; Saravi, S. et al. Scalable functionalization of optical fibers using atomically thin semiconductors. Adv. Mater. 2020, 32, 2003826.

13

Wang, F. K.; Luo, P.; Zhang, Y.; Huang, Y.; Zhang, Q. F.; Zhai, T. Y. Band structure engineered tunneling heterostructures for high-performance visible and near-infrared photodetection. Sci. China Mater. 2020, 63, 1537–1547.

14

Dai, Y. Y.; Wang, Y. D.; Das, S.; Xue, H.; Bai, X. Y.; Hulkko, E.; Zhang, G. Y.; Yang, X. X.; Dai, Q.; Sun, Z. P. Electrical control of interband resonant nonlinear optics in monolayer MoS2. ACS Nano 2020, 14, 8442–8448.

15

Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67.

16

Wang, Y. D.; Wang, Y. W.; Chen, K. Q.; Qi, K.; Xue, T. Y.; Zhang, H.; He, J.; Xiao, S. Niobium carbide Mxenes with broad-band nonlinear optical response and ultrafast carrier dynamics. ACS Nano 2020, 14, 10492–10502.

17

Low, T.; Chaves, A.; Caldwell, J. D.; Kumar, A.; Fang, N. X.; Avouris, P.; Heinz, T. F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182–194.

18

Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 2016, 9, 507–516.

19

Autere, A.; Ryder, C. R.; Saynatjoki, A.; Karvonen, L.; Amirsolaimani, B.; Norwood, R. A.; Peyghambarian, N.; Kieu, K.; Lipsanen, H.; Hersam, M. C. et al. Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy. J. Phys. Chem. Lett. 2017, 8, 1343–1350.

20

Lu, S. B.; Miao, L. L.; Guo, Z. N.; Qi, X.; Zhao, C. J.; Zhang, H.; Wen, S. C.; Tang, D. Y.; Fan, D. Y. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express 2015, 23, 11183–11194.

21

Nasari, H.; Abrishamian, M. S. Electrically tunable, plasmon resonance enhanced, terahertz third harmonic generation via graphene. RSC Adv. 2016, 6, 50190–50200.

22

Wang, J.; Hernandez, Y.; Lotya, M.; Coleman, J. N.; Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 2009, 21, 2430–2435.

23

Wu, R.; Zhang, Y. L.; Yan, S. C.; Bian, F.; Wang, W. L.; Bai, X. D.; Lu, X. H.; Zhao, J. M.; Wang, E. G. Purely coherent nonlinear optical response in solution dispersions of graphene sheets. Nano Lett. 2011, 11, 5159–5164.

24

Martinez, A.; Sun, Z. P. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics 2013, 7, 842–845.

25

Shi, J.; Yu, P.; Liu, F. C.; He, P.; Wang, R.; Qin, L.; Zhou, J. B.; Li, X.; Zhou, J. D.; Sui, X. Y. et al. 3R MoS2 with broken inversion symmetry: A promising ultrathin nonlinear optical device. Adv. Mater. 2017, 29, 1701486.

26

Wang, T.; Chai, Y. Y.; Ma, D. K.; Chen, W.; Zheng, W. W.; Huang, S. M. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699–2711.

27

Liu, L. X.; Zhai, T. Y. Wafer-scale vertical van der waals heterostructures. InfoMat 2021, 3, 3–21.

28

Säynätjoki, A.; Karvonen, L.; Rostami, H.; Autere, A.; Mehravar, S.; Lombardo, A.; Norwood, R. A.; Hasan, T.; Peyghambarian, N.; Lipsanen, H. et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nat. Commun. 2017, 8, 893.

29

Lin, M. C.; Liu, P.; Wu, M. K.; Cheng, Y. H.; Liu, H.; Cho, K.; Wang, W. H.; Lu, F. Two-dimensional nanoporous metal chalcogenophosphates MP2X6 with high electron mobilities. Appl. Surf. Sci. 2019, 493, 1334–1339.

30

Wang, Z.; Willett, R. D.; Laitinen, R. A.; Cleary, D. A. Synthesis and crystal structure of SnP2S6. Chem. Mater. 1995, 7, 856–858.

31

Rushchanskii, K. Z.; Vysochanskii, Y. M.; Cajipe, V. B.; Bourdon, X. Influence of pressure on the structural, dynamical, and electronic properties of the SnP2S6 layered crystal. Phys. Rev. B 2006, 73, 115115.

32

Wang, X. Z.; Du, K. Z.; Liu, W. W.; Hu, P.; Lu, X.; Xu, W. G.; Kloc, C.; Xiong, Q. H. Second-harmonic generation in quaternary atomically thin layered AgInP2S6 crystals. Appl. Phys. Lett. 2016, 109, 123103.

33

Jing, Y.; Zhou, Z. P.; Zhang, J.; Huang, C. B.; Li, Y. F.; Wang, F. SnP2S6 monolayer: A promising 2D semiconductor for photocatalytic water splitting. Phys. Chem. Chem. Phys. 2019, 21, 21064–21069.

34

Zhao, M. X.; Xia, W.; Wang, Y.; Luo, M.; Tian, Z.; Guo, Y. F.; Hu, W. D.; Xue, J. M. Nb2SiTe4: A stable narrow-gap two-dimensional material with ambipolar transport and mid-infrared response. ACS Nano 2019, 13, 10705–10710.

35

Liang, Q. H.; Zheng, Y.; Du, C. F.; Luo, Y. B.; Zhao, J.; Ren, H.; Xu, J. W.; Yan, Q. Y. Asymmetric-layered tin thiophosphate: An emerging 2D ternary anode for high-performance sodium ion full cell. ACS Nano 2018, 12, 12902–12911.

36

Vysochanskii, Y. M.; Baltrunas, D.; Grabar, A. A.; Mazeika, K.; Fedyo, K.; Sudavicius, A. Mössbauer 119Sn and XPS spectroscopy of Sn2P2S6 and SnP2S6 crystals. Phys. Status Solidi B 2009, 246, 1110–1117.

37

Vysochanskii, Y. M.; Stephanovich, V. A.; Molnar, A. A.; Cajipe, V. B.; Bourdon, X. Raman spectroscopy study of the ferrielectric-paraelectric transition in layered CuInP2S6. Phys. Rev. B 1998, 58, 9119–9124.

38

Wang, F. K.; Li, L. G.; Huang, W. J.; Li, L.; Jin, B.; Li, H. Q.; Zhai, T. Y. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv. Funct. Mater. 2018, 28, 1802707.

39

Zobeiri, H.; Xu, S.; Yue, Y. N.; Zhang, Q. Y.; Xie, Y. S.; Wang, X. W. Effect of temperature on Raman intensity of nm-thick WS2: Combined effects of resonance Raman, optical properties, and interface optical interference. Nanoscale 2020, 12, 6064–6078.

40

Luo, S. W.; Qi, X.; Yao, H.; Ren, X. H.; Chen, Q.; Zhong, J. X. Temperature-dependent Raman responses of the vapor-deposited tin selenide ultrathin flakes. J. Phys. Chem. C 2017, 121, 4674–4679.

41

Wu, L. S.; Cong, C. X.; Shang, J. Z.; Yang, W. H.; Chen, Y.; Zhou, J. D.; Ai, W.; Wang, Y. L.; Feng, S.; Zhang, H. B. et al. Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res. 2021, 14, 2215–2223.

42

Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

43

Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

44

Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649.

45

Jiang, T.; Liu, H. R.; Huang, D.; Zhang, S.; Li, Y. G.; Gong, X. G.; Shen, Y. R.; Liu, W. T.; Wu, S. W. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825–829.

46

Liang, J.; Tu, T.; Chen, G. C.; Sun, Y. W.; Qiao, R. X.; Ma, H.; Yu, W. T.; Zhou, X.; Ma, C. J.; Gao, P. et al. Unveiling the fine structural distortion of atomically thin Bi2O2Se by third-harmonic generation. Adv. Mater. 2020, 32, 2002831.

47

Jang, H.; Dhakal, K. P.; Joo, K. I.; Yun, W. S.; Shinde, S. M.; Chen, X.; Jeong, S. M.; Lee, S. W.; Lee, Z.; Lee, J. et al. Transient SHG imaging on ultrafast carrier dynamics of MoS2 nanosheets. Adv. Mater. 2018, 30, 1705190.

48

Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

49

Zhao, M.; Ye, Z. L.; Suzuki, R.; Ye, Y.; Zhu, H. Y.; Xiao, J.; Wang, Y.; Iwasa, Y.; Zhang, X. Atomically phase-matched second-harmonic generation in a 2D crystal. Light Sci. Appl. 2016, 5, e16131.

50

Yu, J.; Kuang, X. F.; Li, J. Z.; Zhong, J. H.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.

51

Janisch, C.; Wang, Y. X.; Ma, D.; Mehta, N.; Elías, A. L.; Perea-López, N.; Terrones, M.; Crespi, V.; Liu, Z. W. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci. Rep. 2014, 4, 5530.

52

Hao, Q. Y.; Yi, H.; Su, H. M.; Wei, B.; Wang, Z.; Lao, Z. Z.; Chai, Y.; Wang, Z. C.; Jin, C. H.; Dai, J. F. et al. Phase identification and strong second harmonic generation in pure ε-InSe and its alloys. Nano Lett. 2019, 19, 2634–2640.

53

Zhou, X.; Cheng, J. X.; Zhou, Y. B.; Cao, T.; Hong, H.; Liao, Z. M.; Wu, S. W.; Peng, H. L.; Liu, K. H.; Yu, D. P. Strong second-harmonic generation in atomic layered GaSe. J. Am. Chem. Soc. 2015, 137, 7994–7997.

54

Huang, W. J.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Phase-engineered growth of ultrathin InSe flakes by chemical vapor deposition for high-efficiency second harmonic generation. Chem.—Eur. J. 2018, 24, 15678–15684.

55

Dasgupta, A.; Gao, J.; Yang, X. D. Anisotropic third-harmonic generation in layered germanium selenide. Laser Photonics Rev. 2020, 14, 1900416.

56

Choi, B. K.; Kim, M.; Jung, K. H.; Kim, J.; Yu, K. S.; Chang, Y. J. Temperature dependence of band gap in MoSe2 grown by molecular beam epitaxy. Nanoscale Res. Lett. 2017, 12, 492.

57

Thripuranthaka, M.; Kashid, R. V.; Rout, C. S.; Late, D. J. Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl. Phys. Lett. 2014, 104, 081911.

58

Liang, J.; Zhang, J.; Li, Z. Z.; Hong, H.; Wang, J. H.; Zhang, Z. H.; Zhou, X.; Qiao, R. X.; Xu, J. Y.; Gao, P. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Lett. 2017, 17, 7539–7543.

59

Khan, A. R.; Liu, B. Q.; Zhang, L. L.; Zhu, Y.; He, X.; Zhang, L. J.; Lü, T. Y.; Lu, Y. R. Extraordinary temperature dependent second harmonic generation in atomically thin layers of transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 2000441.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 July 2021
Revised: 08 August 2021
Accepted: 10 August 2021
Published: 04 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We thank Dr. H. G. Gu from Huazhong University of Science and Technology for his contribution in measuring the refractive index of SnP2S6. This work was supported by the National Natural Science Foundation of China (Nos. 21825103 and 51727809), Hubei Provincial Nature Science Foundation of China (No. 2019CFA002), the Fundamental Research Funds for the Central Universities (No. 2019kfyXMBZ018), and China Postdoctoral Science Foundation (No. 2020M682338). The authors also acknowledge the technical support from the Analytical and Testing Center of Huazhong University of Science and Technology.

Return