Journal Home > Volume 15 , Issue 6

Due to their diverse and tunable composition, distorted lattice and excellent stability, high-entropy ceramics (HECs) hold great promise for catalysis, especially when they present as nanoparticles (NPs). However, current HECs are typically limited to bulky materials with none or fewer defects, because high synthetic temperature (e.g., 1,000–1,200 °C) is usually required to highlight the entropic contribution (TΔS) in ΔG = ΔHTΔS. Being different with previous strategies, a negative Gibbs free energy for HECs crystallization is obtained by dramatically decreasing the mixing enthalpy (ΔH). Guided by this principle, single-phase high-entropy La(Ni0.2Mn0.2Cu0.2Fe0.2Co0.2)O3−δ perovskite (HE-LMO) NPs were prepared at a relatively low temperature (≤ 500 °C). Interestingly, abundant oxygen vacancies were directly created within HE-LMO NPs, which exhibited good activity in catalytic oxidation. Meanwhile, the high-entropy structure endows as-made HE-LMO with robust stability even with 5 vol.% water in feeding gas. Density functional theory (DFT) calculations revealed that the defective sites in HE-LMO NPs facilitated the charge transfer from HE-LMO to CO, thus activating the adsorbed CO gas. The current work may inspire future design and synthesis of HECs NPs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enthalpy-change driven synthesis of high-entropy perovskite nanoparticles

Show Author's information Siyang NieLiang WuLingci ZhaoPengfei Zhang( )
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Due to their diverse and tunable composition, distorted lattice and excellent stability, high-entropy ceramics (HECs) hold great promise for catalysis, especially when they present as nanoparticles (NPs). However, current HECs are typically limited to bulky materials with none or fewer defects, because high synthetic temperature (e.g., 1,000–1,200 °C) is usually required to highlight the entropic contribution (TΔS) in ΔG = ΔHTΔS. Being different with previous strategies, a negative Gibbs free energy for HECs crystallization is obtained by dramatically decreasing the mixing enthalpy (ΔH). Guided by this principle, single-phase high-entropy La(Ni0.2Mn0.2Cu0.2Fe0.2Co0.2)O3−δ perovskite (HE-LMO) NPs were prepared at a relatively low temperature (≤ 500 °C). Interestingly, abundant oxygen vacancies were directly created within HE-LMO NPs, which exhibited good activity in catalytic oxidation. Meanwhile, the high-entropy structure endows as-made HE-LMO with robust stability even with 5 vol.% water in feeding gas. Density functional theory (DFT) calculations revealed that the defective sites in HE-LMO NPs facilitated the charge transfer from HE-LMO to CO, thus activating the adsorbed CO gas. The current work may inspire future design and synthesis of HECs NPs.

Keywords: perovskite, high-entropy ceramics, mechanochemical synthesis, CO oxidation, enthalpy-change

References(32)

1

Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J. P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485.

2

Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309.

3

Jin, T.; Sang, X. H.; Unocic, R. R.; Kinch, R. T.; Liu, X. F.; Hu, J.; Liu, H. L.; Dai, S. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 2018, 30, 1707512.

4

McCormick, C. R.; Schaak, R. E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 2021, 143, 1017–1023.

5

Sarkar, A.; Wang, Q. S.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236.

6

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

7

Li, T. Y.; Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Liu, Z. Y.; Yang, M. H.; Gao, J. L.; Zeng, K. Z.; Brozena, A. H.; Pastel, G. et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nat. Catal. 2021, 4, 62–70.

8

Musicó, B. L.; Gilbert, D.; Ward, T. Z.; Page, K.; George, E.; Yan, J. Q.; Mandrus, D.; Keppens, V. The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties. APL Mater. 2020, 8, 040912.

9

Manzoor, A.; Pandey, S.; Chakraborty, D.; Phillpot, S. R.; Aidhy, D. S. Entropy contributions to phase stability in binary random solid solutions. npj Comput. Mater. 2018, 4, 47.

10

Dragoe, N.; Bérardan, D. Order emerging from disorder. Science 2019, 366, 573–574.

11

Feng, D. Y.; Dong, Y. B.; Zhang, L. L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. A. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem., Int. Ed. 2020, 59, 19503–19509.

12

Yao, Y. G.; Liu, Z. Y.; Xie, P. F.; Huang, Z. N.; Li, T. Y.; Morris, D.; Finfrock, Z.; Zhou, J. H.; Jiao, M. L.; Gao, J. L. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 2020, 6, eaaz0510.

13

Dai, S. Across the board: Sheng Dai on catalyst design by entropic factors. ChemSusChem 2020, 13, 1915–1917.

14

Zhu, H. Y.; Zhang, P. F.; Dai, S. Recent advances of lanthanum-based perovskite oxides for catalysis. ACS Catal. 2015, 5, 6370–6385.

15

Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality. Chem. Rev. 2014, 114, 10292–10368.

16

Jiang, B. B.; Yu, Y.; Cui, J.; Liu, X. X.; Xie, L.; Liao, J. C.; Zhang, Q. H.; Huang, Y.; Ning, S. C.; Jia, B. H. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830–834.

17

Nie, S. Y.; Yang, S. Z.; Zhang, P. F. Mechanochemical redox: Calcination-free synthesis of ceria-hybrid catalyst with ultra-high surface area. ChemCatChem 2021, 13, 2434–2443.

18

Ning, S. S.; Wen, T. Q.; Ye, B. L.; Chu, Y. H. Low-temperature molten salt synthesis of high-entropy carbide nanopowders. J. Am. Ceram. Soc. 2020, 103, 2244–2251.

19

Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71.

20

Estemirova, S. K.; Yankin, A. M.; Titova, S. G.; Balakirev, V. F.; Turkhan, Y. E. Phase composition and structure of La1xCaxMnO3+δ (0 ≤ x ≤ 0.2) solid solutions. Inorg. Mater. 2008, 44, 1251–1256.

21

Zheng, Y. N.; Zhang, R.; Zhang, L.; Gu, Q. F.; Qiao, Z. A. A resol-assisted cationic coordinative co-assembly approach to mesoporous ABO3 perovskite oxides with rich oxygen vacancy for enhanced hydrogenation of furfural to furfuryl alcohol. Angew. Chem., Int. Ed. 2021, 60, 4774–4781.

22

Yang, J.; Hu, S. Y.; Fang, Y. R.; Hoang, S.; Li, L.; Yang, W. W.; Liang, Z. F.; Wu, J.; Hu, J. P.; Xiao, W. et al. Oxygen vacancy promoted O2 activation over perovskite oxide for low-temperature CO oxidation. ACS Catal. 2019, 9, 9751–9763.

23

Wang, X. Y.; Huang, K. K.; Yuan, L.; Xi, S. B.; Yan, W. S.; Geng, Z. B.; Cong, Y. G.; Sun, Y.; Tan, H.; Wu, X. F. et al. Activation of surface oxygen sites in a cobalt-based perovskite model catalyst for CO oxidation. J. Phys. Chem. Lett. 2018, 9, 4146–4154.

24

Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 2018, 140, 8681–8689.

25

Gong, J. L.; Yue, H. R.; Zhao, Y. J.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S. P.; Ma, X. B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J. Am. Chem. Soc. 2012, 134, 13922–13925.

26

Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Hosono, H. Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts. J. Am. Chem. Soc. 2020, 142, 14374–14383.

27

Zhang, L.; Su, Y. Q.; Chang, M. W.; Filot, I. A. W.; Hensen, E. J. M. Linear activation energy-reaction energy relations for LaBO3 (B = Mn, Fe, Co, Ni) supported single-atom platinum group metal catalysts for CO oxidation. J. Phys. Chem. C 2019, 123, 31130–31141.

28

Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Yang, S. H. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

29

Wang, T.; Chen, H.; Yang, Z. Z.; Liang, J. Y.; Dai, S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 2020, 142, 4550–4554.

30

Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C. L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.

31

Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic–inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183.

32

Xiong, H. L.; Zhou, H. R.; Sun, G.; Liu, Z. L.; Zhang, L. L.; Zhang, L.; Du, F.; Qiao, Z. A.; Dai, S. Solvent-free self-assembly for scalable preparation of highly crystalline mesoporous metal oxides. Angew. Chem., Int. Ed. 2020, 59, 11053–11060.

File
12274_2021_3803_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 May 2021
Revised: 15 July 2021
Accepted: 10 August 2021
Published: 26 August 2021
Issue date: June 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The work was supported by National Natural Science Foundation of China (No. 21776174), the National Key R&D Plan (No. 2020YFB0606400), Shanghai Rising-Star Program (No. 20QA1405200), Shanghai Jiao Tong University Scientific and Technological Innovation Funds (No. 2019QYB06), China Shipbuilding Industry Corporation (CSIC) and Inner Mongolia Erdos Group.

Return