Journal Home > Volume 15 , Issue 3

Nickel-iron sulfide has shown attractive activity in electrocatalytic oxygen evolution reaction (OER). However, the effects of low valence sulfur (S2−) and metal species on OER in binary nickel-iron sulfide have rarely been systematically studied. Works based on post-catalysis characterization have led to the assumption that the real active species are nickel-iron oxyhydroxide, and that nickel-iron sulfide acts only as a precatalyst. Therefore, to study the role of S, Ni, and Fe for the development of nickel-iron sulfide catalyst is of self-evident importance. Herein, a facile solvothermal method is used to synthesize acetylene black coated with nickel-iron sulfide nanosheets. Electrochemical tests show that the presence of low valence S species makes the catalyst have faster OER kinetics, larger active area, and intermediate active species adsorption area. Therefore, the present study reveals the enhancing effect of low valence sulfur species (S2−) on OER in binary nickel-iron sulfide. In situ Raman spectroscopy shows that the generation of γ-NiOOH intermediate is essential and Fe does not directly participate in the oxygen production. Density functional theory (DFT) calculation shows that Ni-OH deprotonation is a rate-determining step for both binary nickel-iron sulfide and nickel sulfide. The addition of Fe into NiSx lightly increases the charge transfer of Ni atom to O atom, which makes deprotonation easier and thereby improves the OER performance.


menu
Abstract
Full text
Outline
About this article

Insight into sulfur and iron effect of binary nickel-iron sulfide on oxygen evolution reaction

Show Author's information Qikang WuSongrui WangJiahui GuoXueqing FengHan LiShanshan LvYan ZhouZheng Chen( )
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China

Abstract

Nickel-iron sulfide has shown attractive activity in electrocatalytic oxygen evolution reaction (OER). However, the effects of low valence sulfur (S2−) and metal species on OER in binary nickel-iron sulfide have rarely been systematically studied. Works based on post-catalysis characterization have led to the assumption that the real active species are nickel-iron oxyhydroxide, and that nickel-iron sulfide acts only as a precatalyst. Therefore, to study the role of S, Ni, and Fe for the development of nickel-iron sulfide catalyst is of self-evident importance. Herein, a facile solvothermal method is used to synthesize acetylene black coated with nickel-iron sulfide nanosheets. Electrochemical tests show that the presence of low valence S species makes the catalyst have faster OER kinetics, larger active area, and intermediate active species adsorption area. Therefore, the present study reveals the enhancing effect of low valence sulfur species (S2−) on OER in binary nickel-iron sulfide. In situ Raman spectroscopy shows that the generation of γ-NiOOH intermediate is essential and Fe does not directly participate in the oxygen production. Density functional theory (DFT) calculation shows that Ni-OH deprotonation is a rate-determining step for both binary nickel-iron sulfide and nickel sulfide. The addition of Fe into NiSx lightly increases the charge transfer of Ni atom to O atom, which makes deprotonation easier and thereby improves the OER performance.

Keywords: electrocatalyst, oxygen evolution reaction, nickel-iron sulfide, low valence S species, in-situ Raman

References(53)

1

Feng, C.; Faheem, M. B.; Fu, J.; Xiao, Y. Q.; Li, C. L.; Li, Y. B. Fe-based electrocatalysts for oxygen evolution reaction: Progress and perspectives. ACS Catal. 2020, 10, 4019–4047.

2

Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.

3

He, S.; Du, H. F.; Wang, K.; Liu, Q. C.; Sun, J. M.; Liu, Y. H.; Du, Z. Z.; Xie, L. H.; Ai, W.; Huang, W. Low-temperature molten salt synthesis of MoS2@CoS2 heterostructures for efficient hydrogen evolution reaction. Chem. Commun. 2020, 56, 5548–5551.

4

Pan, Q. W.; Wang, L. Recent perspectives on the structure and oxygen evolution activity for non-noble metal-based catalysts. J. Power Sources 2021, 485, 229335.

5

Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

6

Sun, Y. Q.; Zhang, T.; Li, C. C.; Xu, K.; Li, Y. Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. J. Mater. Chem. A 2020, 8, 13415–13436.

7

Jin, J.; Xia, J. B.; Qian, X.; Wu, T. L.; Ling, H. Q.; Hu, A. M.; Li, M.; Hang, T. Exceptional electrocatalytic oxygen evolution efficiency and stability from electrodeposited NiFe alloy on Ni foam. Electrochim. Acta 2019, 299, 567–574.

8

Ao, K. L.; Wei, Q. F.; Daoud, W. A. MOF-derived sulfide-based electrocatalyst and scaffold for boosted hydrogen production. ACS Appl. Mater. Interfaces 2020, 12, 33595–33602.

9

Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.

10

Yang, Z. B.; Liang, X. Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Res. 2020, 13, 461–466.

11

Bu, X. M.; Liang, X. Y.; Egbo, K. O.; Li, Z. B.; Meng, Y.; Quan, Q.; Li, Y. Y.; Yu, K. M.; Wu, C. M. L.; Ho, J. C. Morphology and strain control of hierarchical cobalt oxide nanowire electrocatalysts via solvent effect. Nano Res. 2020, 13, 3130–3136.

12

Chai, Y. M.; Shang, X.; Liu, Z. Z.; Dong, B.; Han, G. Q.; Gao, W. K.; Chi, J. Q.; Yan, K. L.; Liu, C. G. Ripple-like NiFeCo sulfides on nickel foam derived from in-situ sulfurization of precursor oxides as efficient anodes for water oxidation. Appl. Surf. Sci. 2018, 428, 370–376.

13

Luo, Y.; Wu, Y. H.; Wu, D. H.; Huang, C.; Xiao, D. Z.; Chen, H. Y.; Zheng, S. L.; Chu, P. K. NiFe-layered double hydroxide synchronously activated by heterojunctions and vacancies for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 42850–42858.

14

Hao, Y. M.; Li, Y. F.; Wu, J. X.; Meng, L. S.; Wang, J. L.; Jia, C. J.; Liu, T.; Yang, X. J.; Liu, Z. P.; Gong, M. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity. J. Am. Chem. Soc. 2021, 143, 1493–1502.

15

Huang, L. A.; He, Z. S.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide(NixCo1−xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Res. 2020, 13, 246–254.

16

Wang, T. J.; Liu, X. Y.; Li, Y.; Li, F. M.; Deng, Z. W.; Chen, Y. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Res. 2020, 13, 79–85.

17

Roy, C.; Sebok, B.; Scott, S. B.; Fiordaliso, E. M.; Sørensen, J. E.; Bodin, A.; Trimarco, D. B.; Damsgaard, C. D.; Vesborg, P. C. K.; Hansen, O. et al. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 2018, 1, 820–829.

18

Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.

19

Huang, M. Q.; Liu, W. W.; Wang, L. W.; Liu, J. W.; Chen, G. Y.; You, W. B.; Zhang, J.; Yuan, L. J.; Zhang, X. F.; Che, R. C. Self-transforming ultrathin α-Co(OH)2 nanosheet arrays from metal-organic framework modified graphene oxide with sandwichlike structure for efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 810–817.

20

Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu, L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.

21

Zhao, M.; Li, H. L.; Yuan, W. Y.; Li, C. M. Tannic acid-mediated in situ controlled assembly of nife alloy nanoparticles on pristine graphene as a superior oxygen evolution catalyst. ACS Appl. Energy Mater. 2020, 3, 3966–3977.

22

Han, J. X.; Meng, X. Y.; Lu, L.; Wang, Z. L.; Sun, C. W. Triboelectric nanogenerators powered electrodepositing tri-functional electrocatalysts for water splitting and rechargeable zinc-air battery: A case of Pt nanoclusters on NiFe-LDH nanosheets. Nano Energy 2020, 72, 104669.

23

Dong, Z.; Zhang, W. L.; Xiao, Y.; Wang, Y.; Luan, C. L; Qin, C. L.; Dong, Y.; Li, M. X.; Dai, X. P.; Zhang, X. One-pot-synthesized CoFe-glycerate hollow spheres with rich oxyhydroxides for efficient oxygen evolution reaction. ACS Sustainable Chem. Eng. 2020, 8, 5464–5477.

24

Bodhankar, P. M.; Sarawade, P. B.; Singh, G.; Vinu, A.; Dhawale, D. S. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A 2021, 9, 3180–3208.

25

Peng, L. S.; Shah, S. S. A.; Wei, Z. D. Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chin. J. Catal. 2018, 39, 1575–1593.

26

Mai, W. S.; Cui, Q.; Zhang, Z. Q.; Zhang, K. K.; Li, G. Q.; Tian, L. H.; Hu, W. CoMoP/NiFe-layered double-hydroxide hierarchical nanosheet arrays standing on Ni foam for efficient overall water splitting. ACS. Appl. Energy Mater. 2020, 3, 8075–8085.

27

Wu, Y. Y.; Li, Y.; Yuan, M. K.; Lü, Z.; Xu, L. L.; Wei, B. Direct growth of Ni-Fe phosphides nanohybrids on NiFe foam for highly efficient water oxidation. J. Alloys Compd. 2020, 847, 156363.

28

Li, R.; Xu, J. S.; Lu, C.; Huang, Z. Y.; Wu, Q. W.; Ba, J. W.; Tang, T.; Meng, D. Q.; Luo, W. H. Amorphous NiFe phosphides supported on nanoarray-structured nitrogen-doped carbon paper for high-performance overall water splitting. Electrochim. Acta 2020, 357, 136873.

29

Xuan, C. J.; Lei, W.; Wang, J.; Zhao, T. H.; Lai, C. L.; Zhu, Y.; Sun, Y. B.; Wang, D. L. Sea urchin-like Ni-Fe sulfide architectures as efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 12350–12357.

30

Wu, X. X.; Zhang, T.; Wei, J. X.; Feng, P. F.; Yan, X. B.; Tang, Y. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Res. 2020, 13, 2130–2135.

31

Liu, C. Y.; Ma, H.; Yuan, M. W.; Yu, Z. H.; Li, J.; Shi, K. R.; Liang, Z. P.; Yang, Y.; Zhu, T. J.; Sun, G. B. et al. (NiFe)S2 nanoparticles grown on graphene as an efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 2018, 286, 195–204.

32

Yu, J. H.; Cheng, G. Z.; Luo, W. Ternary nickel-iron sulfide microflowers as a robust electrocatalyst for bifunctional water splitting. J. Mater. Chem. A 2017, 5, 15838–15844.

33

Zhao, Y. G.; Mavrokefalos, C. K.; Zhang, P.; Erni, R.; Li, J. G.; Triana, C. A.; Patzke, G. R. Self-templating strategies for transition metal sulfide nanoboxes as robust bifunctional electrocatalysts. Chem. Mater. 2020, 32, 1371–1383.

34

Zhu, W. X.; Yue, Z. H.; Zhang, W. T.; Hu, N.; Luo, Z. T.; Ren, M. R.; Xu, Z. J.; Wei, Z. Y.; Suo, Y. R.; Wang, J. L. Wet-chemistry topotactic synthesis of bimetallic iron-nickel sulfide nanoarrays: An advanced and versatile catalyst for energy efficient overall water and urea electrolysis. J. Mater. Chem. A 2018, 6, 4346–4353.

35

Zou, Y. J.; Xiao, B.; Shi, J. W.; Hao, H.; Ma, D. D.; Lv, Y. X.; Sun, G. T.; Li, J.; Cheng, Y. H. 3D hierarchical heterostructure assembled by NiFe LDH/(NiFe)Sx on biomass-derived hollow carbon microtubes as bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 2020, 348, 136339.

36

Li, P. S.; Zhao, X. P.; Duan, X. X.; Li, Y. P.; Kuang, Y.; Sun, X. M. A multiphase nickel iron sulfide hybrid electrode for highly active oxygen evolution. Sci. China Mater. 2020, 63, 356–363.

37

Jiang, J.; Zhang, Y. J.; Zhu, X. J.; Lu, S.; Long, L. L.; Chen, J. J. Nanostructured metallic FeNi2S4 with reconstruction to generate feni-based oxide as a highly-efficient oxygen evolution electrocatalyst. Nano Energy 2021, 81, 105619.

38

Ganesan, P.; Staykov, A.; Shu, H.; Uejima, M.; Nakashima, N. Designing an FeIII-doped nickel sulfide/carbon nanotube hybrid catalyst for alkaline electrolyte membrane water electrolyzers and Zn-air battery performances. ACS Appl. Energy Mater. 2020, 3, 10961–10975.

39

Ganesan, P.; Sivanantham, A.; Shanmugam, S. Inexpensive electrochemical synthesis of nickel iron sulphides on nickel foam: Super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis. J. Mater. Chem. A 2016, 4, 16394–16402.

40

Dong, B.; Zhao, X.; Han, G. Q.; Li, X.; Shang, X.; Liu, Y. R.; Hu, W. H.; Chai, Y. M.; Zhao, H.; Liu, C. G. Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 13499–13508.

41

Lai, C. L.; Gong, M. X.; Zhou, Y. C.; Fang, J. Y.; Huang, L.; Deng, Z. P.; Liu, X. P.; Zhao, T. H.; Lin, R. Q.; Wang, K. L. et al. Sulphur modulated Ni3FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air battery performance. Appl. Catal. B: Environ. 2020, 274, 119086.

42

Chandrasekaran, S.; Yao, L.; Deng, L. B.; Bowen, C.; Zhang, Y.; Chen, S. M.; Lin, Z. Q.; Peng, F.; Zhang, P. X. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 2019, 48, 4178–4280.

43

Liu, Y. J.; Xie, X. L.; Zhu, G. X.; Mao, Y.; Yu, Y. N.; Ju, S. X.; Shen, X. P.; Pang, H. Small sized Fe-Co sulfide nanoclusters anchored on carbon for oxygen evolution. J. Mater. Chem. A 2019, 7, 15851–15861.

44

Li, D. Z.; Liu, H.; Feng, L. G. A review on advanced FeNi-based catalysts for water splitting reaction. Energy Fuels 2020, 34, 13491–13522.

45

Liu, J.; Zhou, J.; Liu, S.; Chen, G.; Wu, W.; Li, Y.; Jin, P. J.; Xu, C. L. Amorphous NiFe-layered double hydroxides nanosheets for oxygen evolution reaction. Electrochim. Acta 2020, 356, 136827.

46

Li, W.; Xiong, D. H.; Gao, X. F.; Liu, L. F. The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chem. Commun. 2019, 55, 8744–8763.

47

Che, Q. J.; Li, Q.; Tan, Y.; Chen, X. H.; Xu, X.; Chen, Y. S. One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B: Environ. 2019, 246, 337–348.

48

Zhang, W.; Li, D. H.; Zhang, L. Z.; She, X. L.; Yang, D. J. NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. J. Energ. Chem. 2019, 39, 39–53.

49

Liu, J. L.; Zhu, D. D.; Ling, T.; Vasileff, A.; Qiao, S. Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017, 40, 264–273.

50

Wang, Y. Q.; Tao, S.; Lin, H.; Wang, G. P.; Zhao, K. N.; Cai, R. M.; Tao, K. W.; Zhang, C. X.; Sun, M. Z.; Hu, J. et al. Atomically targeting NiFe LDH to create multivacancies for oer catalysis with a small organic anchor. Nano Energy 2021, 81, 105606.

51

Görlin, M.; Chernev, P.; de, Araújo J. F.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.

52

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

53

Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 2015, 119, 7243–7254.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 June 2021
Revised: 22 July 2021
Accepted: 05 August 2021
Published: 04 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21901007), and the Natural Science Foundation of Anhui Province (No. 2008085QB83).

Return