AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible electrochromic fiber with rapid color switching and high optical modulation

Tianxue Zhu1,2Jiaqing Xiong2,Jingwei Chen2Xinran Zhou2Guofa Cai2Yuekun Lai3,4 ( )Pooi See Lee2( )
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
Qingyuan Innovation Laboratory, Quanzhou 362801, China
Present address: Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
Show Author Information

Graphical Abstract

A flexible electrochromic nylon fiber is successfully fabricated by simple dip-coating of Ag nanowires/PEDOT:PSS/WO3 nanoparticles (PEDOT:PSS = poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid) in consequence. The proposed electrochromic fiber displays rapid color switching, high optical modulations, even in knotted shape, the sample exhibits excellent color contrast.

Abstract

Though flexible electrochromic devices have shown huge potential application in the fields of safety warning, display and smart windows, limited attention was paid on preparing flexible electrochromic fiber because of the difficulty in fabricating the multilayer electrochromic device structure in one-dimensional form. In this study, a flexible electrochromic nylon fiber based on Ag nanowires (NWs)/PEDOT:PSS/WO3 nanoparticles (NPs) (PEDOT:PSS = poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid) is successfully fabricated, delivering rapid color switching (2.5 and 9 s for bleaching and coloration) and high optical modulation (65.5% at 633 nm), and sustainable to repeated mechanical deformations. Ag NWs, PEDOT:PSS and WO3 NPs were dip-coated on the nylon fiber, resulting in an electrochromic fiber electrode with stable fiber resistance of 50–100 Ω/10 cm, which can withstand mechanical deformation against 300 times of bending cycles with bending radius of 0.5 cm, and sustain 30 times of tape-peeling. During the galvanostatic tests, the capacitance of the electrochromic electrode can maintain 70% of the initial value even after 5,000 times of charge–discharge cycles. Even in knotted shape, the fiber still shows excellent color contrast. This study provides a novel method to construct flexible electrochromic fiber and pave the way for the development of flexible optoelectronic devices, such as flexible and wearable displays.

Electronic Supplementary Material

Download File(s)
12274_2021_3798_MOESM1_ESM.pdf (536.7 KB)

References

[1]

Gong, X. F.; Li, S. H.; Lee, P. S. A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications. Nanoscale 2017, 9, 10794–10801.

[2]

Zhang, Z. F.; Zhang, D. S.; Lin, H.; Chen, Y. Y. Flexible fiber-shaped supercapacitors with high energy density based on self-twisted graphene fibers. J. Power Sources 2019, 433, 226711.

[3]

Xiong, J. Q.; Lin, M. F.; Wang, J. X.; Gaw, S. L.; Parida, K.; Lee, P. S. Wearable all-fabric-based triboelectric generator for water energy harvesting. Adv. Energy Mater. 2017, 7, 1701243.

[4]

Wang, Z. P.; Cheng, J. L.; Guan, Q.; Huang, H.; Li, Y. C.; Zhou, J. W.; Ni, W.; Wang, B.; He, S. S.; Peng, H. S. All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy 2018, 45, 210–219.

[5]

Serrapede, M.; Rafique, A.; Fontana, M.; Zine, A.; Rivolo, P.; Bianco, S.; Chetibi, L.; Tresso, E.; Lamberti, A. Fiber-shaped asymmetric supercapacitor exploiting rGO/Fe2O3 aerogel and electrodeposited MnOx nanosheets on carbon fibers. Carbon 2019, 144, 91–100.

[6]

Gu, H. X.; Guo, C. S.; Zhang, S. H.; Bi, L. H.; Li, T. C.; Sun, T. D.; Liu, S. Q. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano 2018, 12, 559–567.

[7]

Huang, Q. J.; Dong, G. B.; Xiao, Y.; Diao, X. G. Electrochemical studies of silicon nitride electron blocking layer for all-solid-state inorganic electrochromic device. Electrochim. Acta 2017, 252, 331–337.

[8]

Wang, J. L.; Lu, Y. R.; Li, H. H.; Liu, J. W.; Yu, S. H. Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 2017, 139, 9921–9926.

[9]

Yun, T. G.; Kim, D.; Kim, Y. H.; Park, M.; Hyun, S.; Han, S. M. Photoresponsive smart coloration electrochromic supercapacitor. Adv. Mater. 2017, 29, 1606728.

[10]

Lin, F.; Bult, J. B.; Nanayakkara, S.; Dillon, A. C.; Richards, R. M.; Blackburn, J. L.; Engtrakul, C. Graphene as an efficient interfacial layer for electrochromic devices. ACS Appl. Mater. Interfaces 2015, 7, 11330–11336.

[11]

Guan, Y.; Agra-Kooijman, D. M.; Fu, S. H.; Jákli, A.; West, J. L. Responsive liquid-crystal-clad fibers for advanced textiles and wearable sensors. Adv. Mater. 2019, 31, 1902168.

[12]

Liu, Z. F.; Zhang, Q. H.; Wang, H. Z.; Li, Y. G. Structural colored fiber fabricated by a facile colloid self-assembly method in micro-space. Chem. Commun. 2011, 47, 12801–12803.

[13]

Macharia, D. K.; Ahmed, S.; Zhu, B.; Liu, Z. X.; Wang, Z. J.; Mwasiagi, J. I.; Chen, Z. G.; Zhu, M. F. UV/NIR-light-triggered rapid and reversible color switching for rewritable smart fabrics. ACS Appl. Mater. Interfaces 2019, 11, 13370–13379.

[14]

Eh, A. L. S.; Tan, A. W. M.; Cheng, X.; Magdassi, S.; Lee, P. S. Recent advances in flexible electrochromic devices: Prerequisites, challenges, and prospects. Energy Technol. 2018, 6, 33–45.

[15]

Ke, Y. J.; Chen, J. W.; Lin, G. J.; Wang, S. C.; Zhou, Y.; Yin, J.; Lee, P. S.; Long, Y. Smart windows: Electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 2019, 9, 1902066.

[16]

Jensen, J.; Hö sel, M.; Dyer, A. L.; Krebs, F. C. Development and manufacture of polymer-based electrochromic devices. Adv. Funct. Mater. 2015, 25, 2073–2090.

[17]

Koo, B. R.; Jo, M. H.; Kim, K. H.; Ahn, H. J. Amorphous-quantized WO3·H2O films as novel flexible electrode for advanced electrochromic energy storage devices. Chem. Eng. J. 2021, 424, 130383.

[18]

Koo, B. R.; Jo, M. H.; Kim, K. H.; Ahn, H. J. Multifunctional electrochromic energy storage devices by chemical cross-linking: Impact of a WO3·H2O nanoparticle-embedded chitosan thin film on amorphous WO3 films. NPG Asia Mater. 2020, 12, 10.

[19]

Wei, D.; Scherer, M. R. J.; Bower, C.; Andrew, P.; Ryhä nen, T.; Steiner, U. A nanostructured electrochromic supercapacitor. Nano Lett. 2012, 12, 1857–1862.

[20]

Cai, G. F.; Wang, J. X.; Lee, P. S. Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 2016, 49, 1469–1476.

[21]

Yun, T. G.; Park, M.; Kim, D. H.; Kim, D.; Cheong, J. Y.; Bae, J. G.; Han, S. M.; Kim, I. D. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 2019, 13, 3141–3150.

[22]

Zhang, J.; Tu, J. P.; Cai, G. F.; Du, G. H.; Wang, X. L.; Liu, P. C. Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template. Electrochim. Acta 2013, 99, 1–8.

[23]

Zhou, K. L.; Wang, H.; Jiu, J. T.; Liu, J. B.; Yan, H.; Suganuma, K. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chem. Eng. J. 2018, 345, 290–299.

[24]

Cai, G. F.; Darmawan, P.; Cui, M. Q.; Wang, J. X.; Chen, J. W.; Magdassi, S.; Lee, P. S. Highly stable transparent conductive silver Grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 2016, 6, 1501882.

[25]

Cai, G. F.; Park, S.; Cheng, X.; Eh, A. L. S.; Lee, P. S. Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive electrochromic energy storage systems. Sci. Technol. Adv. Mater. 2018, 19, 759–770.

[26]

Fan, H. W.; Li, K. R.; Liu, X. L.; Xu, K. X.; Su, Y.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Continuously processed, long electrochromic fibers with multi-environmental stability. ACS Appl. Mater. Interfaces 2020, 12, 28451–28460.

[27]

Zhou, Y.; Fang, J.; Wang, H. X.; Zhou, H.; Yan, G. L.; Zhao, Y.; Dai, L. M.; Lin, T. Multicolor electrochromic fibers with helix-patterned electrodes. Adv. Electron. Mater. 2018, 4, 1800104.

[28]

Chen, X. L.; Lin, H. J.; Deng, J.; Zhang, Y.; Sun, X. M.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Guan, G. Z.; Peng, H. S. Electrochromic fiber-shaped supercapacitors. Adv. Mater. 2014, 26, 8126–8132.

[29]

Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels. Nature 2012, 489, 133–136.

[30]

Xiong, J. Q.; Li, S. H.; Ye, Y. Y.; Wang, J. X.; Qian, K.; Cui, P.; Gao, D.; Lin, M. F.; Chen, T. P.; Lee, P. S. A deformable and highly robust ethyl cellulose transparent conductor with a scalable silver nanowires bundle micromesh. Adv. Mater. 2018, 30, 1802803.

[31]

Grouchko, M.; Kamyshny, A.; Mihailescu, C. F.; Anghel, D. F.; Magdassi, S. Conductive inks with a "built-in" mechanism that enables sintering at room temperature. ACS Nano 2011, 5, 3354–3359.

[32]

Tang, Y.; He, W.; Zhou, G. Y.; Wang, S. X.; Yang, X. J.; Tao, Z. H.; Zhou, J. C. A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering. Nanotechnology 2012, 23, 355304.

[33]

Jin, Y. X.; Li, L.; Cheng, Y. R.; Kong, L. Q.; Pei, Q. B.; Xiao, F. Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer sol-gel transition. Adv. Funct. Mater. 2015, 25, 1581–1587.

[34]

Kim, E.; Jung, S. Layer-by-layer assembled electrochromic films for all-solid-state electrochromic devices. Chem. Mater. 2005, 17, 6381–6387.

[35]

Liu, Q. R.; Chen, Q. Q.; Zhang, Q. Q.; Xiao, Y.; Zhong, X. L.; Dong, G. B.; Delplancke-Ogletree, M. P.; Terryn, H.; Baert, K.; Reniers, F. et al. In situ electrochromic efficiency of a nickel oxide thin film: Origin of electrochemical process and electrochromic degradation. J. Mater. Chem. C 2018, 6, 646–653.

[36]

Malti, A.; Brooke, R.; Liu, X. J.; Zhao, D.; Ersman, P. A.; Fahlman, M.; Jonsson, M. P.; Berggren, M.; Crispin, X. Freestanding electrochromic paper. J. Mater. Chem. C 2016, 4, 9680–9686.

[37]

Mortimer, R. J. Electrochromic materials. Annu. Rev. Mater. Res. 2011, 41, 241–268.

[38]

Costa, C.; Pinheiro, C.; Henriques, I.; Laia, C. A. T. Inkjet printing of sol-gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Appl. Mater. Interfaces 2012, 4, 1330–1340.

[39]

Liu, L.; Layani, M.; Yellinek, S.; Kamyshny, A.; Ling, H.; Lee, P. S.; Magdassi, S.; Mandler, D. "Nano to Nano" electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings. J. Mater. Chem. A 2014, 2, 16224–16229.

Nano Research
Pages 5473-5479
Cite this article:
Zhu T, Xiong J, Chen J, et al. Flexible electrochromic fiber with rapid color switching and high optical modulation. Nano Research, 2023, 16(4): 5473-5479. https://doi.org/10.1007/s12274-021-3798-9
Part of a topical collection:

786

Views

22

Crossref

23

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 02 June 2021
Revised: 03 August 2021
Accepted: 06 August 2021
Published: 23 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return