Journal Home > Volume 15 , Issue 3

Concentrating active Pt atoms in the outer layers of electrocatalysts is a very effective approach to greatly reduce the Pt loading without compromising the electrocatalytic performance and the total electrochemically active surface area (ECSA) for the oxygen reduction reaction (ORR) in hydrogen-based proton-exchange membrane fuel cells. Accordingly, a facile, low-cost, and hydrogen-assisted two-step method is developed in this work, to massively prepare carbon-supported uniform, small-sized, and surfactant-free Pd nanoparticles (NPs) with ultrathin ~3-atomic-layer Pt shells (Pd@Pt3L NPs/C). Comprehensive physicochemical characterizations, electrochemical analyses, fuel cell tests, and density functional theory calculations reveal that, benefiting from the ultrathin Pt-shell nanostructure as well as the resulting ligand and geometric effects, Pd@Pt3L NPs/C exhibits not only significantly enhanced ECSA, electrocatalytic activity, and noble-metal (NM) utilization compared to commercial Pt/C, showing 81.24 m2/gPt, 0.710 mA/cm2, and 352/577 mA/mgNM/Pt in ECSA, area-, and NM-/Pt-mass-specific activity, respectively; but also a much better electrochemical stability during the 10,000-cycle accelerated degradation test. More importantly, the corresponding 25-cm2 H2-air/O2 fuel cell with the low cathodic Pt loading of ~ 0.152 mgPt/cm2geo achieves the high power density of 0.962/1.261 W/cm2geo at the current density of only 1,600 mA/cm2geo, which is much higher than that for the commercial Pt/C. This work not only develops a high-performance and practical Pt-based ORR electrocatalyst, but also provides a scalable preparation method for fabricating the ultrathin Pt-shell nanostructure, which can be further expanded to other metal shells for other energy-conversion applications.


menu
Abstract
Full text
Outline
About this article

Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells

Show Author's information Liuxuan Luo1Cehuang Fu1Aiming Wu1Zechao Zhuang2Fengjuan Zhu1Fangling Jiang3Shuiyun Shen1Xiyang Cai1Qi Kang4Zhifeng Zheng1Chenyi Hu1Jiewei Yin1Guofeng Xia1Junliang Zhang1( )
Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Concentrating active Pt atoms in the outer layers of electrocatalysts is a very effective approach to greatly reduce the Pt loading without compromising the electrocatalytic performance and the total electrochemically active surface area (ECSA) for the oxygen reduction reaction (ORR) in hydrogen-based proton-exchange membrane fuel cells. Accordingly, a facile, low-cost, and hydrogen-assisted two-step method is developed in this work, to massively prepare carbon-supported uniform, small-sized, and surfactant-free Pd nanoparticles (NPs) with ultrathin ~3-atomic-layer Pt shells (Pd@Pt3L NPs/C). Comprehensive physicochemical characterizations, electrochemical analyses, fuel cell tests, and density functional theory calculations reveal that, benefiting from the ultrathin Pt-shell nanostructure as well as the resulting ligand and geometric effects, Pd@Pt3L NPs/C exhibits not only significantly enhanced ECSA, electrocatalytic activity, and noble-metal (NM) utilization compared to commercial Pt/C, showing 81.24 m2/gPt, 0.710 mA/cm2, and 352/577 mA/mgNM/Pt in ECSA, area-, and NM-/Pt-mass-specific activity, respectively; but also a much better electrochemical stability during the 10,000-cycle accelerated degradation test. More importantly, the corresponding 25-cm2 H2-air/O2 fuel cell with the low cathodic Pt loading of ~ 0.152 mgPt/cm2geo achieves the high power density of 0.962/1.261 W/cm2geo at the current density of only 1,600 mA/cm2geo, which is much higher than that for the commercial Pt/C. This work not only develops a high-performance and practical Pt-based ORR electrocatalyst, but also provides a scalable preparation method for fabricating the ultrathin Pt-shell nanostructure, which can be further expanded to other metal shells for other energy-conversion applications.

Keywords: palladium, oxygen reduction reaction, platinum, core@shell nanostructure, scalable preparation, proton-exchange membrane fuel cell

References(64)

1

Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

2

Luo, L. X.; Fu, C. H.; Yang, F.; Li, X. L.; Jiang, F. L.; Guo, Y. G.; Zhu, F. J.; Yang, L. J.; Shen, S. Y.; Zhang, J. L. Composition-graded Cu–Pd nanospheres with Ir-doped surfaces on N-doped porous graphene for highly efficient ethanol electro-oxidation in alkaline media. ACS Catal. 2020, 10, 1171–1184.

3

Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.

4

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

5

Luo, L. X.; Fu, C. H.; Yan, X. H.; Shen, S. Y.; Yang, F.; Guo, Y. G.; Zhu, F. J.; Yang, L. J.; Zhang, J. L. Promoting effects of Au submonolayer shells on structure-designed Cu-Pd/Ir nanospheres: Greatly enhanced activity and durability for alkaline ethanol electro-oxidation. ACS Appl. Mater. Interfaces 2020, 12, 25961–25971.

6

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

7
Lou, W. H.; Ali, A.; Shen, P. K. Recent development of Au arched Pt nanomaterials as promising electrocatalysts for methanol oxidation reaction. Nano Res. in press, DOI: 10.1007/s12274-021-3461-5.
8

Zhang, R. S.; Hanaoka, T. Deployment of electric vehicles in China to meet the carbon neutral target by 2060: Provincial disparities in energy systems, CO2 emissions, and cost effectiveness. Resour. Conserv. Recycl. 2021, 170, 105622.

9

Luo, L. X.; Zhu, F. J.; Tian, R. X.; Li, L.; Shen, S. Y.; Yan, X. H.; Zhang, J. L. Composition-graded PdxNi1–x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction. ACS Catal. 2017, 7, 5420–5430.

10

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

11

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

12

Luo, L. X.; Fu, C. H.; Shen, S. Y.; Zhu, F. J.; Zhang, J. L. Probing structure-designed Cu–Pd nanospheres and their Pt-monolayer-shell derivatives as high-performance electrocatalysts for alkaline and acidic oxygen reduction reactions. J. Mater. Chem. A 2020, 8, 22389–22400.

13

Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578–589.

14

Jin, H. H.; Zhou, H.; Ji, P. X.; Zhang, C. T.; Luo, J. H.; Zeng, W. H.; Hu, C. X.; He, D. P.; Mu, S. C. ZIF-8/LiFePO4 derived Fe-N-P co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res. 2020, 13, 818–823.

15

Li, J. C.; Zhong, H.; Xu, M. J.; Li, T.; Wang, L. G.; Shi, Q. R.; Feng, S.; Lyu, Z. Y.; Liu, D.; Du, D. et al. Boosting the activity of Fe–Nx moieties in Fe–N–C electrocatalysts via phosphorus doping for oxygen reduction reaction. Sci. China Mater. 2020, 63, 965–971.

16

Luo, E. G.; Wang, C.; Li, Y.; Wang, X.; Gong, L. Y.; Zhao, T.; Jin, Z.; Ge, J. J.; Liu, C. P.; Xing, W. Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors. Nano Res. 2020, 13, 2420–2426.

17

Ni, B. X.; Chen, R.; Wu, L. M.; Sun, P. C.; Chen, T. H. Encapsulated FeP nanoparticles with in-situ formed P-doped graphene layers: Boosting activity in oxygen reduction reaction. Sci. China Mater. 2021, 64, 1159–1172.

18

Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.

19

Kim, J.; Hong, Y. J.; Lee, K.; Kim, J. Y. Highly stable Pt-based ternary systems for oxygen reduction reaction in acidic electrolytes. Adv. Energy Mater. 2020, 10, 2002049.

20

Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem 2019, 5, 1486–1511.

21

Liu, Z. Y.; Zhao, Z. P.; Peng, B. S.; Duan, X. F.; Huang, Y. Beyond extended surfaces: Understanding the oxygen reduction reaction on nanocatalysts. J. Am. Chem. Soc. 2020, 142, 17812–17827.

22

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

23

Zhu, F. J.; Luo, L. X.; Wu, A. M.; Wang, C.; Cheng, X. J.; Shen, S. Y.; Ke, C. C.; Yang, H.; Zhang, J. L. Improving the high-current-density performance of PEMFC through much enhanced utilization of platinum electrocatalysts on carbon. ACS Appl. Mater. Interfaces 2020, 12, 26076–26083.

24

Cheng, H. Y.; Cao, Z. M.; Chen, Z. T.; Zhao, M.; Xie, M. H.; Lyu, Z. H.; Zhu, Z. H.; Chi, M. F.; Xia, Y. N. Catalytic system based on sub-2 nm Pt particles and its extraordinary activity and durability for oxygen reduction. Nano Lett. 2019, 19, 4997–5002.

25

Zhu, S. Y.; Wang, X.; Luo, E. G.; Yang, L. T.; Chu, Y. Y.; Gao, L. Q.; Jin, Z.; Liu, C. P.; Ge, J. J.; Xing, W. Stabilized Pt cluster-based catalysts used as low-loading cathode in proton-exchange membrane fuel cells. ACS Energy Lett. 2020, 5, 3021–3028.

26

Ao, X.; Zhang, W.; Zhao, B. T.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C. D.; Liu, M. L. Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 2020, 13, 3032–3040.

27

Ma, Z. H.; Tian, H.; Meng, G.; Peng, L. X.; Chen, Y. F.; Chen, C.; Chang, Z. W.; Cui, X. Z.; Wang, L. J.; Jiang, W. et al. Size effects of platinum particles@CNT on HER and ORR performance. Sci. China Mater. 2020, 63, 2517–2529.

28

Gong, M. X.; Deng, Z. P.; Xiao, D. D.; Han, L. L.; Zhao, T. H.; Lu, Y.; Shen, T.; Liu, X. P.; Lin, R. Q.; Huang, T. et al. One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: Integrating multiple advantages into one catalyst. ACS Catal. 2019, 9, 4488–4494.

29

Zhu, X. X.; Huang, L.; Wei, M.; Tsiakaras, P.; Shen, P. K. Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis. Appl. Catal. B: Environ. 2021, 281, 119460.

30

Jung, W. S.; Lee, W. H.; Oh, H. S.; Popov, B. N. Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 19833–19842.

31

Lu, B. A.; Shen, L. F.; Liu, J.; Zhang, Q. H.; Wan, L. Y.; Morris, D. J.; Wang, R. X.; Zhou, Z. Y.; Li, G.; Sheng, T. et al. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction. ACS Catal. 2021, 11, 355–363.

32

Lim, S. Y.; Martin, S.; Gao, G. H.; Dou, Y. B.; Simonsen, S. B.; Jensen, J. O.; Li, Q. F.; Norrman, K.; Jing, S.; Zhang, W. J. Self-standing nanofiber electrodes with Pt–Co derived from electrospun zeolitic imidazolate framework for high temperature PEM fuel cells. Adv. Funct. Mater. 2021, 31, 2006771.

33

Lopes, P. P.; Li, D. G.; Lv, H. F.; Wang, C.; Tripkovic, D.; Zhu, Y. S.; Schimmenti, R.; Daimon, H.; Kang, Y. J.; Snyder, J. et al. Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. Nat. Mater. 2020, 19, 1207–1214.

34

Liu, Q. B.; Du, L.; Fu, G. T.; Cui, Z. M.; Li, Y. T.; Dang, D.; Gao, X.; Zheng, Q.; Goodenough, J. B. Structurally ordered Fe3Pt nanoparticles on robust nitride support as a high performance catalyst for the oxygen reduction reaction. Adv. Energy Mater. 2019, 9, 1803040.

35

Ma, Y. L.; Kuhn, A. N.; Gao, W. P.; Al-Zoubi, T.; Du, H.; Pan, X. Q.; Yang, H. Strong electrostatic adsorption approach to the synthesis of sub-three nanometer intermetallic platinum–cobalt oxygen reduction catalysts. Nano Energy 2021, 79, 105465.

36

Zhao, X. R.; Cheng, H.; Song, L.; Han, L. L.; Zhang, R.; Kwon, G.; Ma, L.; Ehrlich, S. N.; Frenkel, A. I.; Yang, J. et al. Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction. ACS Catal. 2021, 11, 184–192.

37

Tao, L.; Huang, B. L.; Jin, F. D.; Yang, Y.; Luo, M. C.; Sun, M. Z.; Liu, Q.; Gao, F. M.; Guo, S. J. Atomic PdAu interlayer sandwiched into Pd/Pt core/shell nanowires achieves superstable oxygen reduction catalysis. ACS Nano 2020, 14, 11570–11578.

38

Lyu, X.; Jia, Y.; Mao, X.; Li, D. H.; Li, G.; Zhuang, L. Z.; Wang, X.; Yang, D. J.; Wang, Q.; Du, A. J. et al. Gradient-concentration design of stable core-shell nanostructure for acidic oxygen reduction electrocatalysis. Adv. Mater. 2020, 32, 2003493.

39

Liang, Y. Y.; Lei, H.; Wang, S. J.; Wang, Z. L.; Mai, W. J. Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Sci. China Mater. 2021, 64, 1868–1875.

40

Kühl, S.; Gocyla, M.; Heyen, H.; Selve, S.; Heggen, M.; Dunin-Borkowski, R. E.; Strasser, P. Concave curvature facets benefit oxygen electroreduction catalysis on octahedral shaped PtNi nanocatalysts. J. Mater. Chem. A 2019, 7, 1149–1159.

41

Bu, L. Z.; Huang, B. L.; Zhu, Y. M.; Ning, F. D.; Zhou, X. C.; Huang, X. Q. Highly distorted platinum nanorods for high-efficiency fuel cell catalysis. CCS Chem. 2020, 2, 401–412.

42

Tu, W. Z.; Chen, K.; Zhu, L. J.; Zai, H. C.; Bin, E.; Ke, X. X.; Chen, C. F.; Sui, M. L.; Chen, Q.; Li, Y. J. Tungsten-doping-induced surface reconstruction of porous ternary Pt-based alloy electrocatalyst for oxygen reduction. Adv. Funct. Mater. 2019, 29, 1807070.

43

Liu, M. K.; Lyu, Z. H.; Zhang, Y.; Chen, R. H.; Xie, M. H.; Xia, Y. N. Twin-directed deposition of Pt on Pd icosahedral nanocrystals for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2021, 21, 2248–2254.

44

Li, J. R.; Sharma, S.; Wei, K. C.; Chen, Z. T.; Morris, D.; Lin, H. H.; Zeng, C.; Chi, M. F.; Yin, Z. Y.; Muzzio, M. et al. Anisotropic strain tuning of L10 ternary nanoparticles for oxygen reduction. J. Am. Chem. Soc. 2020, 142, 19209–19216.

45

Li, J. R.; Sharma, S.; Liu, X. M.; Pan, Y. T.; Spendelow, J. S.; Chi, M. F.; Jia, Y. K.; Zhang, P.; Cullen, D. A.; Xi, Z. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 2019, 3, 124–135.

46

Wang, W. C.; Li, X.; He, T. O.; Liu, Y. M.; Jin, M. S. Engineering surface structure of Pt nanoshells on Pd nanocubes to preferentially expose active surfaces for ORR by manipulating the growth kinetics. Nano Lett. 2019, 19, 1743–1748.

47

Zhu, E. B.; Xue, W.; Wang, S. Y.; Yan, X. C.; Zhou, J. X.; Liu, Y.; Cai, J.; Liu, E. S.; Jia, Q. Y.; Duan, X. F. et al. Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Res. 2020, 13, 3310–3314.

48

Zhao, T.; Luo, E. G.; Li, Y.; Wang, X.; Liu, C. P.; Xing, W.; Ge, J. J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Sci. China Mater. 2021, 64, 1671–1678.

49

Cai, B.; Hübner, R.; Sasaki, K.; Zhang, Y. Z.; Su, D.; Ziegler, C.; Vukmirovic, M. B.; Rellinghaus, B.; Adzic, R. R.; Eychmüller, A. Core–shell structuring of pure metallic aerogels towards highly efficient platinum utilization for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2018, 57, 2963–2966.

50

Zhao, R. P.; Liu, Y.; Liu, C.; Xu, G. R.; Chen, Y.; Tang, Y. W.; Lu, T. H. Pd@Pt core–shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 20855–20860.

51

Zhang, G.; Shao, Z. G.; Lu, W. T.; Xie, F.; Xiao, H.; Qin, X. P.; Yi, B. L. Core–shell Pt modified Pd/C as an active and durable electrocatalyst for the oxygen reduction reaction in PEMFCs. Appl. Catal. B: Environ. 2013, 132-133, 183–194.

52

Hu, Y. M.; Zhu, M. Z.; Luo, X.; Wu, G.; Chao, T. T.; Qu, Y. T.; Zhou, F. Y.; Sun, R. B.; Han, X.; Li, H. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem., Int. Ed. 2021, 60, 6533–6538.

53

Chen, G. Y.; Kuttiyiel, K. A.; Li, M.; Su, D.; Du, L.; Du, C. Y.; Gao, Y. Z.; Fei, W. D.; Yin, G. P.; Sasaki, K. et al. Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 20725–20736.

54

Zhao, Y. P.; Tao, L.; Dang, W.; Wang, L. L.; Xia, M. R.; Wang, B.; Liu, M. M.; Gao, F. M.; Zhang, J. J.; Zhao, Y. F. High-indexed PtNi alloy skin spiraled on Pd nanowires for highly efficient oxygen reduction reaction catalysis. Small 2019, 15, 1900288.

55

Xiong, Y. L.; Shan, H.; Zhou, Z. N.; Yan, Y. C.; Chen, W. L.; Yang, Y. X.; Liu, Y. F.; Tian, H.; Wu, J. B.; Zhang, H. et al. Tuning surface structure and strain in Pd-Pt core–shell nanocrystals for enhanced electrocatalytic oxygen reduction. Small 2017, 13, 1603423.

56

Lei, W. J.; Li, M. G.; He, L.; Meng, X.; Mu, Z. J.; Yu, Y. S.; Ross, F. M.; Yang, W. W. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Res. 2020, 13, 638–645.

57

Li, J.; Zhou, Q. Y.; Yue, M. F.; Chen, S. G.; Deng, J. H.; Ping, X. Y.; Li, Y.; Li, J.; Liao, Q.; Shao, M. H. et al. Cross-linked multi-atom Pt catalyst for highly efficient oxygen reduction catalysis. Appl. Catal. B: Environ. 2021, 284, 119728.

58

Zhang, L.; Zhao, Y.; Banis, M. N.; Adair, K.; Song, Z. X.; Yang, L. J.; Markiewicz, M.; Li, J. J.; Wang, S. Z.; Li, R. Y. et al. Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance. Nano Energy 2019, 60, 111–118.

59

Guan, J. Y.; Zan, Y. X.; Shao, R.; Niu, J.; Dou, M. L.; Zhu, B. N.; Zhang, Z. P.; Wang, F. Phase segregated Pt–SnO2/C nanohybrids for highly efficient oxygen reduction electrocatalysis. Small 2020, 16, 2005048.

60

Choi, J.; Lee, Y. J.; Park, D.; Jeong, H.; Shin, S.; Yun, H.; Lim, J.; Han, J. H.; Kim, E. J.; Jeon, S. S. et al. Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy Environ. Sci. 2020, 13, 4921–4929.

61

Yang, J. C.; Kang, D.; Jeon, Y.; Lee, J. H.; Jeong, H. Y.; Shin, H. S.; Song, H. K. Sphere-to-multipod transmorphic change of nanoconfined Pt electrocatalyst during oxygen reduction reaction. Small 2019, 15, 1802228.

62

Kongkanand, A.; Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 2016, 7, 1127–1137.

63

Shen, S. Y.; Cheng, X. J.; Wang, C.; Yan, X. H.; Ke, C. C.; Yin, J. W.; Zhang, J. L. Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs). Phys. Chem. Chem. Phys. 2017, 19, 26221–26229.

64

Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. Electronic structures of Pt–Co and Pt–Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC–XPS. J. Phys. Chem. B 2006, 110, 23489–23496.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 July 2021
Revised: 03 August 2021
Accepted: 04 August 2021
Published: 26 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21975157), the China Postdoctoral Science Foundation (No. 2021M692062), and the Science and Technology Commission of Shanghai Municipality (No. 20511104004). The XAFS measurements were performed at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility. The DFT calculations were run on the π 2.0 cluster supported by the Center for High Performance Computing at Shanghai Jiao Tong University.

Return