Journal Home > Volume 15 , Issue 3

Metal-based electrocatalysts with different sizes (single atoms, nanoclusters, and nanoparticles) show different catalytic behaviors for various electrocatalytic reactions. Regulating the coordination environment of active sites with precision to rationally design an efficient electrocatalyst is of great significance for boosting electrocatalytic reactions. This review summarizes the recent process of heterogeneous supported single atoms, nanoclusters, and nanoparticles catalysts in electrocatalytic reactions, respectively, and figures out the construct strategies and design concepts based on their strengths and weaknesses. Specifically, four key factors for enhancing electrocatalytic performance, including electronic structure, coordination environment, support property, and interfacial interactions are proposed to provide an overall comprehension to readers in this field. Finally, some insights into the current challenges and future opportunities of the heterogeneous supported electrocatalysts are provided.


menu
Abstract
Full text
Outline
About this article

Design concept for electrocatalysts

Show Author's information Yao Wang§Xiaobo Zheng§Dingsheng Wang( )
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Yao Wang and Xiaobo Zheng contributed equally to this work.

Abstract

Metal-based electrocatalysts with different sizes (single atoms, nanoclusters, and nanoparticles) show different catalytic behaviors for various electrocatalytic reactions. Regulating the coordination environment of active sites with precision to rationally design an efficient electrocatalyst is of great significance for boosting electrocatalytic reactions. This review summarizes the recent process of heterogeneous supported single atoms, nanoclusters, and nanoparticles catalysts in electrocatalytic reactions, respectively, and figures out the construct strategies and design concepts based on their strengths and weaknesses. Specifically, four key factors for enhancing electrocatalytic performance, including electronic structure, coordination environment, support property, and interfacial interactions are proposed to provide an overall comprehension to readers in this field. Finally, some insights into the current challenges and future opportunities of the heterogeneous supported electrocatalysts are provided.

Keywords: electronic structure, electrocatalysts, coordination environment, support effect, interfacial interactions

References(215)

1

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

2

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

3

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

4

Liu, J. D.; Ma, J. M.; Zhang, Z. C.; Qin, Y. C.; Wang, Y. J.; Wang, Y.; Tan, R.; Duan, X. C.; Tian, T. Z.; Zhang, C. H. et al. Roadmap: Electrocatalysts for green catalytic processes. J. Phy. Mater. 2021, 4, 022004.

5

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

6

Luo, M.; Zhao, Z.; Zhang, Y.; Sun, Y.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y.; Ma, J.-Y.; Lin, F.; Su, D.; Lu, G.; Guo, S. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

7

Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.

8

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

9

Ge, J. J.; Wei, P.; Wu, G.; Liu, Y. D.; Yuan, T. W.; Li, Z. J.; Qu, Y. T.; Wu, Y.; Li, H.; Zhuang, Z. B. et al. Ultrathin palladium nanomesh for electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 3435–3438.

10

Qin, Y. C.; Wang, F. Q.; Wang, X. M.; Wang, M. W.; Zhang, W. L.; An, W. K.; Wang, X. P.; Ren, Y. L.; Zheng, X.; Lv, D. C. et al. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Met. 2021, 40, 2354–2368.

11

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Sturct. 2021, 2, 2000051.

12

Zhao, Z. P.; Chen, C. L.; Liu, Z. Y.; Huang, J.; Wu, M. H.; Liu, H. T.; Li, Y. J.; Huang, Y. Pt-Based nanocrystal for electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1808115.

13

Zheng, X. B.; Chen, Y. P.; Zheng, X. S.; Zhao, G. Q.; Rui, K.; Li, P.; Xu, X.; Cheng, Z. X.; Dou, S. X.; Sun, W. P. Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1803482.

14

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P. J.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

15

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 133, 13500–13505.

16
Xu, Q.; Zhang, J.; Wang, D. S.; Li, Y. D. Single-atom site catalysts supported on two-dimensional materials for energy applications. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2021.05.032.https://doi.org/10.1016/j.cclet.2021.05.032
DOI
17

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

18

Hunter, B. M.; Gray, H. B.; Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120–14136.

19

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

20

Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments - reaction mechanisms and catalysts. Adv. Energy Mater. 2017, 7, 1601275.

21
Yang J. R. Li W. H. Tan S. D. Xu K. N. Wang Y. Wang D. S. Li Y. D. The electronic metal-support interaction directing the design  of  single  atomic  site  catalysts: Achieving  high  efficiency towards  hydrogen  evolution Angew.  Chem. 2021 60 19081 19091 10.1002/ange.202107123

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem. 2021, 60, 19081–19091.

22

Han, A.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

23

Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.

24

Wan, S. A.; Wu, J. D.; Wang, D. P.; Liu, H. L.; Zhang, Z. C.; Ma, J. M.; Wang, C. Co/N-doped carbon nanotube arrays grown on 2D MOFs-derived matrix for boosting the oxygen reduction reaction in alkaline and acidic media. Chin. Chem. Lett. 2021, 32, 816–821.

25

Wang, W.; Lei, B.; Guo, S. J. Engineering multimetallic nanocrystals for highly efficient oxygen reduction catalysts. Adv. Energy Mater. 2016, 6, 1600236.

26

Han, A.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 133, 19411–19420.

27

Meng, G.; Zhang, J.; Li, X. Y.; Wang, D. S.; Li, Y. D. Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Appl. Phys. Rev. 2021, 8, 021321.

28

Qu, Q. Y.; Ji, S. F.; Chen, Y. J.; Wang, D. S.; Li, Y. D. The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction. Chem. Sci. 2021, 12, 4201–4215.

29

Yang, C. H.; Zhu, Y. T.; Liu, J. Q.; Qin, Y. C.; Wang, H. Q.; Liu, H. L.; Chen, Y. N.; Zhang, Z. C.; Hu, W. P. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 2020, 77, 105126.

30

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+ -N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem. Int., Ed. 2020, 132, 22651–22655.

31
Wang Y., Wang, D. S., Li, Y. D. Rational design of single-atom site  electrocatalysts:  From  theoretical  understandings  to  practicalapplications Adv. Mater. 2021 33 2008151 10.1002/adma.202008151

Wang, Y., Wang, D. S., Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

32

Cui, T. T.; Ma, L. N.; Wang, S. B.; Ye, C. L.; Liang, X.; Zhang, Z. D.; Meng, G.; Zheng, L. R.; Hu, H. S.; Zhang, J. W. et al. Atomically dispersed Pt–N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9429–9439.

33

Wang, Y.; Zheng, M.; Sun, H.; Zhan, X.; Luan, C. L.; Li, Y. R.; Zhao, L.; Zhao, H. H.; Dai, X. P.; Ye, J. Y. et al. Catalytic Ru containing Pt3Mn nanocrystals enclosed with high-indexed facets: Surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation. Appl. Catal. B: Environ. 2019, 253, 11–20.

34

Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

35

Han, A.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, 2004500.

36

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

37
Li Y. R. Li M. X. Li S. N. Liu Y. J. Chen J. Wang Y. A review of energy and environment electrocatalysis based on high-index  faceted  nanocrystals Rare  Met. 2021 40 3406 3441 10.1007/s12598-021-01747-8

Li, Y. R.; Li, M. X.; Li, S. N.; Liu, Y. J.; Chen, J.; Wang, Y. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met. 2021, 40, 3406–3441.

38

Wang, Q. C.; Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Zeng, J.; Song, Y. H.; Duan, X. D.; Wang, D. S.; Li, Y. D. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 2020, 13, 1593–1616.

39

Ding, R.; Liu, Y. D.; Rui, Z. Y.; Li, J.; Liu, J. G.; Zou, Z. G. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526.

40

Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

41

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. B.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

42

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

43

Yang, J. R.; Li, W. H.; Wang, D. S. Machine learning: The trends of developing high-efficiency single-atom materials. Chem Catal. 2021, 1, 24–26.

44

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

45
Jing, H. Y.; Zhao, Z. Y.; Zhang, C. Y.; Liu, W.; Wu, D. Y.; Zhu, C.; Hao, C.; Zhang, J. W.; Shi, Y. T. Tuned single atom coordination structures mediated by polarization force and sulfur anions for photovoltaics. Nano Res., in press, DOI: 10.1007/s12274-021-3331-1.https://doi.org/10.1007/s12274-021-3331-1
DOI
46
Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res., in press, DOI: 10.1007/s12274-021-3511-z.https://doi.org/10.1007/s12274-021-3511-z
DOI
47

Zhang, B. W.; Ren, L.; Wang, Y. X.; Du, Y.; Jiang, L.; Dou, S. X. New monatomic layer clusters for advanced catalysis materials. Sci. China Mater. 2019, 62, 149–153.

48

Wang, Q.; Chen, S.; Li, P.; Ibraheem, S.; Li, J.; Deng, J.; Wei, Z. Surface Ru enriched structurally ordered intermetallic PtFe@PtRuFe core–shell nanostructure boosts methanol oxidation reaction catalysis. Appl. Catal. B–Environ. 2019, 252, 120–127.

49

Iqbal, M.; Bando, Y.; Sun, Z. Q.; Wu, K. C. W.; Rowan, A. E.; Na, J.; Guan, B. Y.; Yamauchi, Y. In search of excellence: Convex versus concave noble metal nanostructures for electrocatalytic applications. Adv. Mater. 2021, 33, 2004554.

50

Wang, P. T.; Shao, Q.; Guo, J.; Bu, L. Z.; Huang, X. Q. Promoting alkaline hydrogen evolution catalysis on P-Decorated, Ni-segregated Pt–Ni–P nanowires via a synergetic cascade route. Chem. Mater. 2020, 32, 3144–3149.

51

Zhang, G. R.; Wöllner, S. Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions. Appl. Catal. B: Environ. 2018, 222, 26–34.

52

Zhang, Q.; Zhang, X. X.; Wang, J. Z.; Wang, C. W. Graphene-supported single-atom catalysts and applications in electrocatalysis. Nanotechnology 2021, 32, 032001.

53

Ge, J. J.; He, D. S.; Chen, W. X.; Ju, H. X.; Zhang, H.; Chao, T. T.; Wang, X. Q.; You, R.; Lin, Y.; Wang, Y. et al. Atomically dispersed Ru on ultrathin Pd nanoribbons. J. Am. Chem. Soc. 2016, 138, 13850–13853.

54

Zhao, Z. J.; Liu, S. H.; Zha, S. J.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

55
Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res., in press, DOI: 10.1007/s12274-021-3479-8.https://doi.org/10.1007/s12274-021-3479-8
DOI
56

Chao, T. T.; Luo, X.; Chen, W. X.; Jiang, B.; Ge, J. J.; Lin, Y.; Wu, G.; Wang, X. Q.; Hu, Y. M.; Zhuang, Z. B. et al. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16047–16051.

57

Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co–N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

58

Wu, J. B.; Xiong, L. K.; Zhao, B. T.; Liu, M. L.; Huang, L. Densely populated single atom catalysts. Small Methods 2020, 4, 1900540.

59

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

60

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

61

Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

62

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

63

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

64

Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.

65

Shi, Q. R.; Zhu, C. Z.; Du, D.; Lin, Y. H. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 2019, 48, 3181–3192.

66

Liu, C.; Qian, J.; Ye, Y. F.; Zhou, H.; Sun, C. J.; Sheehan, C.; Zhang, Z. Y.; Wan, G.; Liu, Y. S.; Guo, J. H. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36–45.

67
Jiao, L.; Li, J. K.; Richard, L. L.; Sun, Q.; Stracensky, T.; Liu, E. S.; Sougrati, M. T.; Zhao, Z. P.; Yang, F.; Zhong, S. C. et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater., in press, DOI: 10.1038/s41563-021-01030-2.https://doi.org/10.1038/s41563-021-01030-2
DOI
68

Zhao, S. Z.; Wen, Y. F.; Liu, X. J.; Pen, X. Y.; Lü, F.; Gao, F. Y.; Xie, X. Z.; Du, C. C.; Yi, H. H.; Kang, D. J. et al. Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Res. 2020, 13, 1544–1551.

69

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

70

Liu, J.; Bunes, B. R.; Zang, L.; Wang, C. Y. Supported single-atom catalysts: Synthesis, characterization, properties, and applications. Environ. Chem. Lett. 2018, 16, 477–505.

71

Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.

72

Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

73

Zhou, L. N.; Martirez, J. M. P.; Finzel, J.; Zhang, C.; Swearer, D. F.; Tian, S.; Robatjazi, H.; Lou, M. H.; Dong, L. L.; Henderson, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 2020, 5, 61–70.

74

Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934–944.

75

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

76

Lu, C.; Fang, R. Y.; Chen, X. Single-atom catalytic materials for advanced battery systems. Adv. Mater. 2020, 32, 1906548.

77

Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal-support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

78

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

79

Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

80

Zheng, X. B.; Cui, P. X.; Qian, Y. M.; Zhao, G. Q.; Zheng, X. S.; Xu, X.; Cheng, Z. X.; Liu, Y. Y.; Dou, S. X.; Sun, W. P. Multifunctional active-center-transferable platinum/lithium cobalt oxide heterostructured electrocatalysts towards superior water splitting. Angew. Chem., Int. Ed. 2020, 59, 14533–14540.

81

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

82

Suryanto, B. H. R.; Matuszek, K.; Choi, J.; Hodgetts, R. Y.; Du, H. L.; Bakker, J. M.; Kang, C. S. M.; Cherepanov, P. V.; Simonov, A. N.; MacFarlane, D. R. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 2021, 372, 1187–1191.

83

Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.

84

Qiu, Y.; Peng, X. Y.; Lü, F.; Mi, Y. Y.; Zhuo, L. C.; Ren, J. Q.; Liu, X. J.; Luo, J. Single-atom catalysts for the electrocatalytic reduction of nitrogen to ammonia under ambient conditions. Chem.—Asian J. 2019, 14, 2770–2779.

85

Yan, X.; Liu, D. L.; Cao, H. H.; Hou, F.; Liang, J.; Dou, S. X. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods 2019, 3, 1800501.

86

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

87

Gao, R. J.; Wang, J.; Huang, Z. F.; Zhang, R. R.; Wang, W.; Pan, L.; Zhang, J. F.; Zhu, W. K.; Zhang, X. W.; Shi, C. X. et al. Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 2021, 6, 614–623.

88
Li S. Chen B. B. Wang Y. Ye M. Y. van Aken P. A. Cheng C. Thomas A. Oxygen-evolving catalytic atoms on metal carbides Nat. Mater. 2021 20 1240 1247 10.1038/s41563-021-01006-2

Li, S.; Chen, B. B.; Wang, Y.; Ye, M. Y.; van Aken, P. A.; Cheng, C.; Thomas, A. Oxygen-evolving catalytic atoms on metal carbides. Nat. Mater. 2021, 20, 1240–1247.

89

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

90

Zhu, Y. Z.; Sokolowski, J.; Song, X. C.; He, Y. H.; Mei, Y.; Wu, G. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy Mater. 2020, 10, 1902844.

91

Cheng, X.; Lu, Y.; Zheng, L. R.; Pupucevski, M.; Li, H. Y.; Chen, G.; Sun, S. R.; Wu, G. Engineering local coordination environment of atomically dispersed platinum catalyst via lattice distortion of support for efficient hydrogen evolution reaction. Mater. Today Energy 2021, 20, 100653.

92

Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Antink, W. H.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

93

Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

94

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

95

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

96

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

97

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem. 2020, 12, 764–772.

98

Xie, X. H.; He, C.; Li, B. Y.; He, Y. H.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y. W.; Engelhard, M. H. et al. Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.

99

Tiwari, J. N.; Sultan, S.; Myung, C. W.; Yoon, T.; Li, N. N.; Ha, M. R.; Harzandi, A. M.; Park, H. J.; Kim, D. Y.; Chandrasekaran, S. S. et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 2018, 3, 773–782.

100

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

101

Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484.

102

Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q.; Zhao, H. J.; Wang, D. S.; Li, Y. D. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

103

Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.

104

Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D. L.; Chen, S. M.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N. et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 2019, 31, 1903841.

105

Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.

106

Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y.; Li, Y. D. Ionic exchange of metal–organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

107

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co–N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

108

Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

109

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

110

Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal–organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

111

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

112

Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

113

Sankar, M.; He, Q.; Engel, R. V.; Sainna, M. A.; Logsdail, A. J.; Roldan, A.; Willock, D. J.; Agarwal, N.; Kiely, C. J.; Hutchings, G. J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020, 120, 3890–3938.

114

Vayssilov, G. N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G. P.; Tsud, N.; Skála, T.; Bruix, A.; Illas, F.; Prince, K. C. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 2011, 10, 310–315.

115

Wang, Y,; Wang, D. S.; Li, Y. D.;. Atom-level interfacial synergy of single-atom site catalysts forelectrocatalysis. J. Energy Chem. 2022, 65, 103115.

116

Zhang, J. F.; Liu, C. B.; Zhang, B. Insights into single-atom metal-support interactions in electrocatalytic water splitting. Small Methods 2019, 3, 1800481.

117
Xu, W. J.; Cao, D. F.; Moses, O. A.; Sheng, B. B.; Wu, C. Q.; Shou, H. W.; Wu, X. J.; Chen, S. M.; Song, L. Probing self-optimization of carbon support in oxygen evolution reaction. Nano Res., in press, DOI: 10.1007/s12274-021-3368-1.https://doi.org/10.1007/s12274-021-3368-1
DOI
118

Flytzani-Stephanopoulos, M. Gold atoms stabilized on various supports catalyze the water–gas shift reaction. Acc. Chem. Res. 2014, 47, 783–792.

119

Back, S.; Jung, Y. TiC- and TiN-supported single-atom catalysts for dramatic improvements in CO2 electrochemical reduction to CH4. ACS Energy Lett. 2017, 2, 969–975.

120

Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the Support effect in atomically dispersed pt on WO3−x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038–16042.

121

Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. Acs Catal. 2017, 7, 1301–1307.

122

Li, S. W.; Liu, J. J.; Yin, Z.; Ren, P. J.; Lin, L. L.; Gong, Y.; Yang, C.; Zheng, X. S.; Cao, R. C.; Yao, S. Y. et al. Impact of the coordination environment on atomically dispersed Pt catalysts for oxygen reduction reaction. ACS Catal. 2020, 10, 907–913.

123

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

124

Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

125

Li, M. F.; Duanmu, K.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

126

Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

127

Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

128

Zhang, Z. R.; Feng, C.; Liu, C. X.; Zuo, M.; Qin, L.; Yan, X. P.; Xing, Y. L.; Li, H. L.; Si, R. et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 2020, 11, 1215.

129

Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

130

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

131

Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816.

132

Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int Ed. 2021, 60, 7234–7244.

133

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

134

Rong, H. P.; Ji, S. F.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 2020, 11, 5884.

135

Ou, H. H.; Wang, D. S.; Li, Y. D. How to select effective electrocatalysts: Nano or single atom? Nano Select 2021, 2, 492–511.

136

Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442–3448.

137

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

138

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

139

Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.

140

Zhou, Y. Q.; Zhang, L. F.; Suo, H. L.; Hua, W. B.; Indris, S.; Lei, Y. J.; Lai, W. H.; Wang, Y. X.; Hu, Z. P.; Liu, H. K. et al. Atomic cobalt vacancy-cluster enabling optimized electronic structure for efficient water splitting. Adv. Funct. Mater. 2021, 31, 2101797.

141

Yin, P.; Luo, X.; Ma, Y. F.; Chu, S. Q.; Chen, S.; Zheng, X. S.; Lu, J. L.; Wu, X. J.; Liang, H. W. Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nat. Commun. 2021, 12, 3135.

142

Wang, Y.; Zheng, P.; Li, M. X.; Li, Y. R.; Zhang, X.; Chen, J.; Fang, X.; Liu, Y. J.; Yuan, X. L.; Dai, X. P. et al. Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation. Nanoscale 2020, 12, 9669–9679.

143

Deng, W. L.; Lee, S.; Libera, J. A.; Elam, J. W.; Vajda, S.; Marshall, C. L. Cleavage of the C–O–C bond on size-selected subnanometer cobalt catalysts and on ALD-cobalt coated nanoporous membranes. Appl. Catal. A: Gen. 2011, 393, 29–35.

144

Vajda, S.; Lee, S.; Sell, K.; Barke, I.; Kleibert, A.; von Oeynhausen, V.; Meiwes-Broer, K. H.; Rodriguez, A. F.; Elam, J. W.; Pellin, M. M. et al. Combined temperature-programmed reaction and in situ X-ray scattering studies of size-selected silver clusters under realistic reaction conditions in the epoxidation of propene. J. Chem. Phys. 2009, 131, 121104.

145

Vajda, S.; Winans, R. E.; Elam, J. W.; Lee, B.; Pellin, M. J.; Seifert, S.; Tikhonov, G. Y.; Tomczyk, N. A. Supported gold clusters and cluster-based nanomaterials: Characterization, stability and growth studies by in situ GISAXS under vacuum conditions and in the presence of hydrogen. Top. Catal. 2006, 39, 161–166.

146

Kwon, G.; Ferguson. G. A.; Heard, C. J.; Tyo, E. C.; Yin, C.; DeBartolo, J.; Seifert, S.; Winans, R. E.; Kropf, A. J.; Greeley, J. et al. Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 2013, 7, 5808–5817.

147

Mao, X. N.; Wang, L.; Xu, Y. F.; Wang, P. J.; Li, Y. Y.; Zhao, J. J. Computational high-throughput screening of alloy nanoclusters for electrocatalytic hydrogen evolution. NPJ Comput. Mater. 2021, 7, 46.

148

Liu, J. C.; Ma, X. L.; Li, Y.; Wang, Y. G.; Xiao, H.; Li, J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 2018, 9, 1610.

149

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zha, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

150

Wei, Z. W.; Wang, H. J.; Zhang, C.; Xu, K.; Lu, X. L.; Lu, T. B. Reversed charge transfer and enhanced hydrogen spillover in platinum nanoclusters anchored on titanium oxide with rich oxygen vacancies boost hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 16622–16627.

151

Zhang, W. Y.; Yao, Q. S.; Jiang, G. P.; Li, C.; Fu, Y. S.; Wang, X.; Yu, A. P.; Chen, Z. W. Molecular trapping strategy to stabilize subnanometric Pt clusters for highly active electrocatalysis. ACS Catal. 2019, 9, 11603–11613.

152

Gao, J. J.; Du, P.; Zhang, Q. H.; Shen, X.; Chiang, F. K.; Wen, Y. R.; Lin, X.; Liu, X. J.; Qiu, H. J. Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis. Electrochim. Acta 2019, 297, 155–162.

153

Schnaidt, J.; Heinen, M.; Jusys, Z.; Behm, R. J. Electro-oxidation of ethylene glycol on a Pt-film electrode studied by combined in situ infrared spectroscopy and online mass spectrometry. J. Phys. Chem. C 2012, 116, 2872–2883.

154

Gu, X. K.; Liu, B.; Greeley, J. First-principles study of structure sensitivity of ethylene glycol conversion on platinum. ACS Catal. 2015, 5, 2623–2631.

155

Chen, L. G.; Liang, X.; Li, X. T.; Pei, J. J.; Lin, H.; Jia, D. Z.; Chen, W. X.; Wang, D. S.; Li, Y. D. Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy 2020, 73, 104784.

156

Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

157

Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748–3751.

158

Yang, S. C.; Liu, F. Z.; Wu, C.; Yang, S. Tuning surface properties of low dimensional materials via strain engineering. Small 2016, 12, 4028–4047.

159

Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

160

Huang, X. Q.; Zhao, Z. Q.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

161

Ruan, C. J.; Han, L. H.; Chen, X.; Li, X. C.; Zhang, C. F.; Lu, P. F.; Guan, P. F. First principles calculations of electronic properties on M13Pt42 (M = Al, Ga, In, Mg, Ca, Sr). J. Cluster. Sci. 2017, 28, 1749–1759.

162

Zhang, C. L.; Shen, X. C.; Pan, Y. B.; Peng, Z. M. A review of Pt-based electrocatalysts for oxygen reduction reaction. Front. Energy 2017, 11, 268–285.

163

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

164

Hernandez-Fernandez, P.; Masini, F.; McCarthy, D. N.; Strebel, C. E.; Friebel, D.; Deiana, D.; Malacrida, P.; Nierhoff, A.; Bodin, A.; Wise, A. M. et al. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nat. Chem. 2014, 6, 732–738.

165

Escudero-Escribano, M.; Malacrid, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeis, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.

166

Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p-d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.

167

Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Yang, Y.; Luo, M. C.; Huang, Y. R.; Sun, Y. J.; Chao, Y. G.; Yang, W. X.; Yang, W. W. et al. Lavender-like Ga-doped Pt3Co nanowires for highly stable and active electrocatalysis. ACS Catal. 2020, 10, 3018–3026.

168

Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.

169

Jung, N.; Bhattacharjee, S.; Gautam, S.; Park, H. Y.; Ryu, J.; Chung, Y. H.; Lee, S. Y.; Jang, I.; Jang, J. H.; Park, S. H. et al. Organic–inorganic hybrid PtCo nanoparticle with high electrocatalytic activity and durability for oxygen reduction. NPG Asia Mater. 2016, 8, e237.

170

Wang, Y.; Zhuo, H. Y.; Zhang, X.; Li, Y. R.; Yang, J. T.; Liu, Y. J.; Dai, X. P.; Li, M. X.; Zhao, H. H.; Cui, M. L. et al. Interfacial synergy of ultralong jagged Pt85Mo15-S nanowires with abundant active sites on enhanced hydrogen evolution in an alkaline solution. J. Mater. Chem. A 2019, 7, 24328–24336.

171

Xie, Y. F.; Cai, J. Y.; Wu, Y. S.; Zang, Y. P.; Zheng, X. S.; Ye, J.; Cui, P. X.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.

172

Yu, L.; Zhou, T. T.; Cao, S. H.; Tai, X. S.; Liu, L. L.; Wang, Y. Suppressing the surface passivation of Pt-Mo nanowires via constructing Mo-Se coordination for boosting HER performance. Nano Res. 2021, 14, 2659–2665.

173

Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem., Int. Ed. 2013, 52, 7472–7476.

174

Wang, Y.; Shi, F. F.; Yang, Y. Y.; Cai, W. B. Carbon supported Pd–Ni–P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media. J. Power Sources 2013, 243, 369–373.

175

Zhang, W.; Ma, X. L.; Xiao, H.; Lei, M.; Li, J. Mechanistic investigations on thermal hydrogenation of CO2 to methanol by nanostructured CeO2(100): The crystal-plane effect on catalytic reactivity. J. Phys. Chem. C 2019, 123, 11763–11771.

176

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 493–497.

177

Lee, I.; Delbecq, F.; Morales, R.; Albiter, M. A.; Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 2009, 8, 132–138.

178

Calle-Vallejo, F.; Loffreda, D.; Koper, M. T. M.; Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 2015, 7, 403–410.

179

Johnson, N. J. J.; Lam, B.; MacLeod, B. P.; Sherbo, R. S.; Moreno-Gonzalez, M.; Fork, D. K.; Berlinguette, C. P. Facets and vertices regulate hydrogen uptake and release in palladium nanocrystals. Nat. Mater. 2019, 18, 454–458.

180

Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P. et al. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles. Nat. Commun. 2015, 6, 10092.

181

Narayan, T. C.; Hayee, F.; Baldi, A.; Koh, A. L.; Sinclair, R.; Dionne, J. A. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles. Nat. Commun. 2017, 8, 14020.

182

Markovic, N.; Gasteiger, H.; Ross, P. N. Kinetics of oxygen reduction on Pt(hkl) electrodes: Implications for the crystallite size effect with supported Pt electrocatalysts. J. Electrochem. Soc. 1997, 144, 1591–1597.

183

Wu, F. X.; Niu, W. X.; Lai, J. P.; Zhang, W.; Luque, R.; Xu, G. B. Highly excavated octahedral nanostructures integrated from ultrathin mesoporous PtCu3 nanosheets: Construction of three-dimensional open surfaces for enhanced electrocatalysis. Small 2019, 15, 1804407.

184

Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Gong, Y.; Yi, D.; Zhang, Q. H.; Zhu, C. Z.; Saleem, F.; Chen, B.; Lai, Z. C. et al. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647.

185

Hoshi, Y.; Yoshida, T.; Nishikata, A.; Tsuru, T. Dissolution of Pt-M (M: Cu, Co, Ni, Fe) binary alloys in sulfuric acid solution. Electrochim. Acta 2011, 56, 5302–5309.

186

Dubau, L.; Lopez-Haro, M.; Castanheira, L.; Durst, J.; Chatenet, M.; Bayle-Guillemaud, P.; Guétaz, L.; Caqué, N.; Rossinot, E.; Maillard, F. Probing the structure, the composition and the ORR activity of Pt3Co/C nanocrystallites during a 3422 h PEMFC ageing test. Appl. Catal. B: Environ. 2013, 142–143, 801–808.

187

Fortunelli, A.; Goddard III, W. A.; Sementa, L.; Barcaro, G.; Negreiros, F. R.; Jaramillo-Botero, A. The atomistic origin of the extraordinary oxygen reduction activity of Pt3Ni7 fuel cell catalysts. Chem. Sci. 2015, 6, 3915–3925.

188

Tian, N.; Zhou, Z. Y., Sun S. G., Ding Y., Wang Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

189

Wang, Y.; Zhuo, H. Y.; Zhang, X.; Dai, X. P.; Yu, K. M.; Luan, C. L.; Yu, L.; Xiao, Y.; Li, J.; Wang, M. L. et al. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy 2018, 48, 590–599.

190

Comotti, M.; Li, W. C.; Spliethoff, B.; Schüth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917–924.

191

Hu, Y. M.; Luo, X.; Wu, G.; Chao, T. T.; Li, Z. J.; Qu, Y. T.; Li, H.; Wu, Y.; Jiang, B.; Hong, X. Engineering the atomic layer of RuO2 on PdO nanosheets boosts oxygen evolution catalysis. ACS Appl. Mater. Interfaces 2019, 11, 42298–42304.

192

Hu, Y. M.; Zhu, M. Z.; Luo, X.; Wu, G.; Chao, T. T.; Qu, Y. T.; Zhou, F. Y.; Sun, R. B.; Han, X.; Li, H. et al. Coplanar Pt/C nanomeshes with ultrastable oxygen reduction performance in fuel cells. Angew. Chem., Int. Ed. 2021, 60, 6533–6538.

193

Rodriguez, J. A.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M. Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(000): Intrinsic activity and importance of support interactions. Angew. Chem., Int. Ed. 2007, 46, 1329–1332.

194

Vannice, M. A.; Sen, B. Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum. J Catal. 1989, 115, 65–78.

195

Muto, K. I.; Katada, N.; Niwa, M. Complete oxidation of methane on supported palladium catalyst: Support effect. Appl. Catal. A: General 1996, 134, 203–215.

196

Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

197

Tsai, C.; Abild-Pedersen, F.; Nørskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 2014, 14, 1381–1387.

198

Ng, J. W. D.; García-Melchor, M.; Bajdich, M.; Chakthranont, P.; Kirk, C.; Vojvodic, A.; Jaramillo, T. F. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat. Energy 2016, 1, 16053.

199

Schuppert, A. K.; Savan, A.; Ludwig, A.; Mayrhofer, K. J. J. Potential-resolved dissolution of Pt-Cu: A thin-film material library study. Electrochim. Acta 2014, 144, 332–340.

200

Cao, L.; Mueller, T. Theoretical insights into the effects of oxidation and mo-doping on the structure and stability of Pt-Ni nanoparticles. Nano Lett. 2016, 16, 7748–7754.

201

Pan, Y. T.; Yan, L. Q.; Shao, Y. T.; Zuo, J. M.; Yang, H. Regioselective atomic rearrangement of Ag-Pt octahedral catalysts by chemical vapor-assisted treatment. Nano Lett. 2016, 16, 7988–7992.

202

Xi, Z.; Li, J. R.; Su, D.; Muzzio, M.; Yu, C.; Li, Q.; Sun, S. H. Stabilizing CuPd nanoparticles via CuPd coupling to WO2.72 nanorods in electrochemical oxidation of formic acid. J. Am. Chem. Soc. 2017, 139, 15191–15196.

203

Sievers, G. W.; Jensen, A. W.; Quinson, J.; Zana, A.; Bizzotto, F.; Oezaslan, M.; Dworzak, A.; Kirkensgaard, J. J. K.; Smitshuysen, T. E. L.; Kadkhodazadeh, S. et al. Self-supported Pt-CoO networks combining high specific activity with high surface area for oxygen reduction. Nat. Mater. 2021, 20, 208–213.

204

Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.

205

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

206

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

207

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

208

Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.

209

Lyu, Z. X.; Zhang, X. G.; Wang, Y. C.; Liu, K.; Qiu, C. Y.; Liao, X. Y.; Yang, W. H.; Xie, Z. X.; Xie, S. F. Amplified interfacial effect in an atomically dispersed RuOx-on-Pd 2D inverse nanocatalyst for high-performance oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 16093–16100.

210

Chu, K.; Liu, Y. P.; Li, Y. B.; Guo, Y. L.; Tian, Y. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2020, 12, 7081–7090.

211

Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

212

Sun, M. Z.; Dougherty, A. W.; Huang, B. L.; Li, Y. L.; Yan, C. H. Accelerating atomic catalyst discovery by theoretical calculations-machine learning strategy. Adv. Energy Mater. 2020, 10, 1903949.

213

Ulissi, Z. W.; Tang, M. T.; Xiao, J. P.; Liu, X. Y.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; Jaramillo, T. F. et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 2017, 7, 6600–6608.

214

Jinnouchi, R.; Hirata, H.; Asahi, R. Extrapolating energetics on clusters and single-crystal surfaces to nanoparticles by machine-learning scheme. J. Phys. Chem. C 2017, 121, 26397–26405.

215

Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

Publication history
Copyright
Acknowledgements

Publication history

Received: 25 June 2021
Revised: 01 August 2021
Accepted: 03 August 2021
Published: 04 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFA0702003), the National Natural Science Foundation of China (Nos. 21890383 and 21871159), the science and Technology Key Project of Guangdong Province of China (No. 2020B010188002), and the China Postdoctoral Science Foundation (Nos. 2021M691757, 2021M690086, and 2021TQ0170).

Return