Journal Home > Volume 16 , Issue 4

The development of reliable catalysts with both excellent activity and recyclability for carbon dioxide (CO2) hydrogenation is challenging. Herein, a ternary hybrid heterogeneous catalyst, involving mononuclear Ru complex, N, P-containing porous organic polymers (POPs), and mesoporous hollow carbon spheres (Ru3+-POPs@MHCS) is reported for CO2 hydrogenation to formate. Based on comprehensive structural analyses, we demonstrated that Ru3+-POPs were successfully immobilized within MHCS. The optimized Ru3+-0.5POPs@MHCS catalyst, which was obtained with about 5 wt.% Ru3+ and 0.5 mmol POPs polymers confined into 0.3 g MHCS, exhibited high catalytic activity for CO2 hydrogenation to formate (turnover number (TON) > 1,200 for 24 h under mild reaction conditions (4.0 MPa, 120 °C)) and improved durability, compared to Ru3+ catalysts without POPs polymers (Ru3+-MHCS) and unencapsulated MHCS (Ru3+-0.5POPs) catalysts. The improved catalytic performance is attributed to the high surface area and large pore volume of MHCS which favors dispersion and stabilization of Ru3+-POPs. Furthermore, the MHCS and POPs showed high CO2 adsorption ability. Ru3+-POPs encapsulated into MHCS reduces the activation energy barrier for CO2 hydrogenation to formate.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ru complex and N, P-containing polymers confined within mesoporous hollow carbon spheres for hydrogenation of CO2 to formate

Show Author's information Guoxiang Yang1Yasutaka Kuwahara1,2,3,4Kohsuke Mori1,2,3Catherine Louis5Hiromi Yamashita1,2,3( )
Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France

Abstract

The development of reliable catalysts with both excellent activity and recyclability for carbon dioxide (CO2) hydrogenation is challenging. Herein, a ternary hybrid heterogeneous catalyst, involving mononuclear Ru complex, N, P-containing porous organic polymers (POPs), and mesoporous hollow carbon spheres (Ru3+-POPs@MHCS) is reported for CO2 hydrogenation to formate. Based on comprehensive structural analyses, we demonstrated that Ru3+-POPs were successfully immobilized within MHCS. The optimized Ru3+-0.5POPs@MHCS catalyst, which was obtained with about 5 wt.% Ru3+ and 0.5 mmol POPs polymers confined into 0.3 g MHCS, exhibited high catalytic activity for CO2 hydrogenation to formate (turnover number (TON) > 1,200 for 24 h under mild reaction conditions (4.0 MPa, 120 °C)) and improved durability, compared to Ru3+ catalysts without POPs polymers (Ru3+-MHCS) and unencapsulated MHCS (Ru3+-0.5POPs) catalysts. The improved catalytic performance is attributed to the high surface area and large pore volume of MHCS which favors dispersion and stabilization of Ru3+-POPs. Furthermore, the MHCS and POPs showed high CO2 adsorption ability. Ru3+-POPs encapsulated into MHCS reduces the activation energy barrier for CO2 hydrogenation to formate.

Keywords: heterogeneous catalysis, porous organic polymers (POPs), mesoporous hollow carbon spheres, formate synthesis, CO2 hydrogenation

References(60)

[1]

Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.

[2]

Sun, R. Y.; Liao, Y. H.; Bai, S. T.; Zheng, M. Y.; Zhou, C.; Zhang, T.; Sels, B. F. Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: From nanoscale to single atom. Energy Environ. Sci. 2021, 14, 1247–1285.

[3]

Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034.

[4]

Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 2018, 118, 434–504.

[5]

Alvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838.

[6]

Peter, S. C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis. ACS Energy Lett. 2018, 3, 1557–1561.

[7]

Umar, M.; Ji, X. F.; Kirikkaleli, D.; Alola, A. A. The imperativeness of environmental quality in the United States transportation sector amidst biomass-fossil energy consumption and growth. J. Clean. Prod. 2021, 285, 124863.

[8]

Tackett, B. M.; Gomez, E.; Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2019, 2, 381–386.

[9]

Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles. J. Am. Chem. Soc. 2018, 140, 8902–8909.

[10]

Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 2019, 48, 4466–4514.

[11]

Lu, W. W.; Jia, B.; Cui, B. L.; Zhang, Y.; Yao, K. S.; Zhao, Y. L.; Wang, J. J. Efficient photoelectrochemical reduction of carbon dioxide to formic acid: A functionalized ionic liquid as an absorbent and electrolyte. Angew. Chem., Int. Ed. 2017, 56, 11851–11854.

[12]

Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo-and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973.

[13]

Wang, Y.; Tan, L.; Tan, M. H.; Zhang, P. P.; Fang, Y.; Yoneyama, Y.; Yang, G. H.; Tsubaki, N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics. ACS Catal. 2018, 9, 895–901.

[14]

Eppinger, J.; Huang, K. W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2017, 2, 188–195.

[15]

Mori, K.; Dojo, M.; Yamashita, H. Pd and Pd-Ag nanoparticles within a macroreticular basic resin: an efficient catalyst for hydrogen production from formic acid decomposition. ACS Catal. 2013, 3, 1114–1119.

[16]

Kuwahara, Y.; Fujie, Y.; Mihogi, T.; Yamashita, H. Hollow mesoporous organosilica spheres encapsulating PdAg nanoparticles and poly (ethyleneimine) as reusable catalysts for CO2 hydrogenation to formate. ACS Catal. 2020, 10, 6356–6366.

[17]

Yang, G. X.; Kuwahara, Y.; Masuda, S.; Mori, K.; Louis, C.; Yamashita, H. PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO2 to formate. J. Mater. Chem. A 2020, 8, 4437–4446.

[18]

Valentini, F.; Kozell, V.; Petrucci, C.; Marrocchi, A.; Gu, Y. L.; Gelman, D.; Vaccaro, L. Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ. Sci. 2019, 12, 2646–2664.

[19]

Chauvier, C.; Cantat, T. A viewpoint on chemical reductions of carbon-oxygen bonds in renewable feedstocks including CO2 and biomass. ACS Catal. 2017, 7, 2107–2115.

[20]

Kleij, A. W.; North, M.; Urakawa, A. CO2 catalysis. ChemSusChem 2017, 10, 1036–1038.

[21]

Jaleel, A.; Kim, S. H.; Natarajan, P.; Gunasekar, G. H.; Park, K.; Yoon, S.; Jung, K. D. Hydrogenation of CO2 to formates on ruthenium(III) coordinated on melamine polymer network. J. CO2 Util. 2020, 35, 245–255.

[22]

Yang, G. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. Pd-Cu alloy nanoparticles confined within mesoporous hollow carbon spheres for the hydrogenation of CO2 to formate. J. Phys. Chem. C 2021, 125, 3961–3971.

[23]

Huff, C. A.; Sanford, M. S. Catalytic CO2 hydrogenation to formate by a ruthenium pincer complex. ACS Catal. 2013, 3, 2412–2416.

[24]

Bernskoetter, W. H.; Hazari, N. Reversible hydrogenation of carbon dioxide to formic acid and methanol: Lewis acid enhancement of base metal catalysts. Acc. Chem. Res. 2017, 50, 1049–1058.

[25]

Sordakis, K.; Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem. Rev. 2018, 118, 372–433.

[26]

Himeda, Y.; Miyazawa, S.; Hirose, T. Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. ChemSusChem 2011, 4, 487–493.

[27]

Malaza, S. S. P.; Makhubela, B. C. E. Direct and indirect CO2 hydrogenation catalyzed by Ir (III), Rh (III), Ru (II), and Os (II) half-sandwich complexes to generate formates and N, N-diethylformamide. J. CO2 Util. 2020, 39, 101149.

[28]

Filonenko, G. A.; Van Putten, R.; Schulpen, E. N.; Hensen, E. J. M.; Pidko, E. A. Highly efficient reversible hydrogenation of carbon dioxide to formates using a ruthenium PNP-pincer catalyst. ChemCatChem 2014, 6, 1526–1530.

[29]

Estes, D. P.; Leutzsch, M.; Schubert, L.; Bordet, A.; Leitner, W. Effect of ligand electronics on the reversible catalytic hydrogenation of CO2 to formic acid using ruthenium polyhydride complexes: A thermodynamic and kinetic study. ACS Catal. 2020, 10, 2990–2998.

[30]

Kanega, R.; Ertem, M. Z.; Onishi, N.; Szalda, D. J.; Fujita, E.; Himeda, Y. CO2 hydrogenation and formic acid dehydrogenation using Ir catalysts with amide-based ligands. Organometallics 2020, 39, 1519–1531.

[31]

Onishi, N.; Kanega, R.; Fujita, E.; Himeda, Y. Carbon dioxide hydrogenation and formic acid dehydrogenation catalyzed by iridium complexes bearing pyridyl-pyrazole ligands: Effect of an electron-donating substituent on the pyrazole ring on the catalytic activity and durability. Adv. Synth. Catal. 2019, 361, 289–296.

[32]

Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir (III)-pincer complexes. J. Am. Chem. Soc. 2009, 131, 14168–14169.

[33]

Shao, X. Z.; Yang, X. F.; Xu, J. M.; Liu, S.; Miao, S.; Liu, X. Y.; Su, X.; Duan, H. M.; Huang, Y. Q.; Zhang, T. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem 2019, 5, 693–705.

[34]

Mori, K.; Taga, T.; Yamashita, H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal. 2017, 7, 3147–3151.

[35]

Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. Angew. Chem., Int. Ed. 2011, 50, 12551–12554.

[36]

Kuwahara, Y.; Fujie, Y.; Yamashita, H. Poly(ethyleneimine)-tethered Ir complex catalyst immobilized in titanate nanotubes for hydrogenation of CO2 to formic acid. ChemCatChem 2017, 9, 1906–1914.

[37]

Masuda, S.; Mori, K.; Futamura, Y.; Yamashita, H. PdAg nanoparticles supported on functionalized mesoporous carbon: promotional effect of surface amine groups in reversible hydrogen delivery/storage mediated by formic acid/CO2. ACS Catal. 2018, 8, 2277–2285.

[38]

Fu, X. P.; Peres, L.; Esvan, J.; Amiens, C.; Philippot, K.; Yan, N. An air-stable, reusable Ni@Ni(OH)2 Nanocatalyst for CO2/bicarbonate hydrogenation to formate. Nanoscale 2021, 13, 8931–8939.

[39]

Sun, Q. M.; Chen, B. W. J.; Wang, N.; He, Q.; Chang, A.; Yang, C. M.; Asakura, H.; Tanaka, T.; Hülsey, M. J.; Wang, C. H. et al. Zeolite-encaged Pd-Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation. Angew. Chem., Int. Ed. 2020, 132, 20358–20366.

[40]

Yang, G. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. PdAg alloy nanoparticles encapsulated in N-doped microporous hollow carbon spheres for hydrogenation of CO2 to formate. Appl. Catal. B: Environ. 2021, 283, 119628.

[41]

Gunasekar, G. H.; Shin, J.; Jung, K. D.; Park, K.; Yoon, S. Design strategy toward recyclable and highly efficient heterogeneous catalysts for the hydrogenation of CO2 to formate. ACS Catal. 2018, 8, 4346–4353.

[42]

Chen, B. F.; Dong, M. H.; Liu, S. L.; Xie, Z. B.; Yang, J. J.; Li, S. P.; Wang, Y. Y.; Du, J.; Liu, H. Z.; Han, B. X. CO2 hydrogenation to formate catalyzed by Ru coordinated with a N, P-containing polymer. ACS Catal. 2020, 10, 8557–8566.

[43]

Kann, A.; Hartmann, H.; Besmehn, A.; Hausoul, P. J. C.; Palkovits, R. Hydrogenation of CO2 to formate over ruthenium immobilized on solid molecular phosphines. ChemSusChem 2018, 11, 1857–1865.

[44]

Zhang, H. W.; Noonan, O.; Huang, X. D.; Yang, Y. N.; Xu, C.; Zhou, L.; Yu, C. Z. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 2016, 10, 4579–4586.

[45]

Gao, X. C.; Cui, R. X.; Ji, G. F.; Liu, Z. L. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale 2018, 10, 6205–6211.

[46]

Alkrad, J. A.; Mrestani, Y.; Stroehl, D.; Wartewig, S.; Neubert, R. Characterization of enzymatically digested hyaluronic acid using NMR, Raman, Ir, and UV-Vis spectroscopies. J. Pharm. Biomed. Anal. 2003, 31, 545–550.

[47]

Xu, Z. M.; Xing, W. Y.; Hou, Y. B.; Zou, B.; Han, L. F.; Hu, W. Z.; Hu, Y. The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite. Combust. Flame 2021, 226, 108–116.

[48]

Cheng, K. P.; Svec, F.; Lv, Y. Q.; Tan, T. W. Hierarchical micro-and mesoporous Zn-based metal-organic frameworks templated by hydrogels: Their use for enzyme immobilization and catalysis of knoevenagel reaction. Small 2019, 15, 1902927.

[49]

Kuwahara, Y.; Kango, H.; Yamashita, H. Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes. ACS Catal. 2019, 9, 1993–2006.

[50]

Sreenavya, A.; Baskaran, T.; Ganesh, V.; Sharma, D.; Kulal, N.; Sakthivel, A. Framework of ruthenium-containing nickel hydrotalcite-type material: Preparation, characterisation, and its catalytic application. RSC Adv. 2018, 8, 25248–25257.

[51]

Xu, H. B.; Zhang, X. Q.; Liu, D.; Chun, Y.; Fan, X. Y. A high efficient method for introducing reactive amines onto carbon fiber surfaces using hexachlorocyclophosphazene as a new coupling agent. Appl. Surf. Sci. 2014, 320, 43–51.

[52]

Arrigo, R.; Schuster, M. E.; Xie, Z. L.; Yi, Y.; Wowsnick, G.; Sun, L. L.; Hermann, K. E.; Friedrich, M.; Kast, P.; Hävecker, M. et al. Nature of the N-Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 2015, 5, 2740–2753.

[53]

Boscoletto, A. B.; Gleria, M.; Milani, R.; Meda, L.; Bertani, R. Surface functionalization with phosphazene substrates—part VII. Silicon-based materials functionalized with hexachlorocyclo-phosphazene. Surf. Interface Anal. 2009, 41, 27–33.

[54]

Liu, C.; Yan, H. X.; Feng, S. Y.; Li, T. T.; Zhang, M. M. Hyperbranched cyclotriphosphazene polymer-grafted graphene with amphipathicity. Chem. Lett. 2014, 43, 1263–1265.

[55]

Qadir, M. I.; Weilhard, A.; Fernandes, J. A.; De Pedro, I.; Vieira, B. J. C.; Waerenborgh, J. C.; Dupont, J. Selective carbon dioxide hydrogenation driven by ferromagnetic RuFe nanoparticles in ionic liquids. ACS Catal. 2018, 8, 1621–1627.

[56]

Filonenko, G. A.; Vrijburg, W. L.; Hensen, E. J. M.; Pidko, E. A. On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates. J. Catal. 2016, 343, 97–105.

[57]

Masuda, S.; Mori, K.; Kuwahara, Y.; Yamashita, H. PdAg nanoparticles supported on resorcinol-formaldehyde polymers containing amine groups: The promotional effect of phenylamine moieties on CO2 transformation to formic acid. J. Mater. Chem. A 2019, 7, 16356–16363.

[58]

Guo, L. S.; Zhang, P. P.; Cui, Y.; Liu, G. B.; Wu, J. H.; Yang, G. H.; Yoneyama, Y.; Tsubaki, N. One-pot hydrothermal synthesis of nitrogen functionalized carbonaceous material catalysts with embedded iron nanoparticles for CO2 hydrogenation. ACS Sustainable Chem. Eng. 2019, 7, 8331–8339.

[59]

Di Felice, L.; Courson, C.; Foscolo, P. U.; Kiennemann, A. Iron and nickel doped alkaline-earth catalysts for biomass gasification with simultaneous tar reformation and CO2 capture. Int. J. Hydrogen Energy 2011, 36, 5296–5310.

[60]

An, B.; Zeng, L. Z.; Jia, M.; Li, Z.; Lin, Z. K.; Song, Y.; Zhou, Y.; Cheng, J.; Wang, C.; Lin, W. B. Molecular iridium complexes in metal-organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. J. Am. Chem. Soc. 2017, 139, 17747–17750.

File
12274_2021_3792_MOESM1_ESM.pdf (815.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 May 2021
Revised: 25 July 2021
Accepted: 03 August 2021
Published: 19 August 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by JSPS KAKENHI (Nos. 18K14056 and 19H00838) and JST, PRESTO (No. JPMJPR19T3), Japan. A part of this work was supported by the cooperative research program of “Network Joint Research Center for Materials and Devices” (No. 20211069). We also thank the support of the International Joint Research Promotion Program at Osaka University. G. X. Y. gratefully acknowledges the financial support from the China Scholarship Council (No. 201808310132). Y. K., K. M., and H. Y. thank the Elements Strategy Initiative of MEXT (No. JPMXP0112101003), Japan. The synchrotron radiation experiments for XAFS measurement were performed at the BL01B1 beamline in SPring-8 with approval from JASRI (Nos. 2019B1114 and 2020A1064).

Return