Journal Home > Volume 15 , Issue 6

Smart actuators integrated with sensing functions are taking a significant role in constructing intelligent robots. However, the detection of sensing signals in most actuators requires external electrical power, lacking in the self-powered feature. Herein, we report a graphene-based light-driven actuator with self-powered sensing function, which is designed by integrating a photo-thermoelectric generator into the actuator intelligently. When one part of the actuator is irradiated by near-infrared light, it shows a deformation with bending curvature up to 1.5 cm−1, owing to the mismatch volume changes between two layers of the actuator. Meanwhile, the temperature difference across the actuator generates a voltage signal due to the photo-thermoelectric effect. The Seebeck coefficient is higher than 40 μV/K. Furthermore, the self-powered voltage signal is consistent with the deformation trend, which can be used to characterize the deformation state of actuator without external electrical power. We further demonstrate a gripper and a bionic hand. Their deformations mimic the motions of human hand (or finger), even making complex gestures. Concurrently, they can output self-powered voltage signals for sensing. We hope this research will pave a new way for self-powered devices, state-of-the-art intelligent robots, and other integrated multi-functional systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Photo-thermoelectric generator integrated in graphene-based actuator for self-powered sensing function

Show Author's information Peidi Zhou1,2,3Jian Lin1,2,3Wei Zhang1,2,3Zhiling Luo1,2,3Luzhuo Chen1,2,3( )
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China

Abstract

Smart actuators integrated with sensing functions are taking a significant role in constructing intelligent robots. However, the detection of sensing signals in most actuators requires external electrical power, lacking in the self-powered feature. Herein, we report a graphene-based light-driven actuator with self-powered sensing function, which is designed by integrating a photo-thermoelectric generator into the actuator intelligently. When one part of the actuator is irradiated by near-infrared light, it shows a deformation with bending curvature up to 1.5 cm−1, owing to the mismatch volume changes between two layers of the actuator. Meanwhile, the temperature difference across the actuator generates a voltage signal due to the photo-thermoelectric effect. The Seebeck coefficient is higher than 40 μV/K. Furthermore, the self-powered voltage signal is consistent with the deformation trend, which can be used to characterize the deformation state of actuator without external electrical power. We further demonstrate a gripper and a bionic hand. Their deformations mimic the motions of human hand (or finger), even making complex gestures. Concurrently, they can output self-powered voltage signals for sensing. We hope this research will pave a new way for self-powered devices, state-of-the-art intelligent robots, and other integrated multi-functional systems.

Keywords: graphene, self-powered, generator, photo-thermoelectric effect, light-driven actuator

References(46)

1

Gorissen, B.; Reynaerts, D.; Konishi, S.; Yoshida, K.; Kim, J. W.; De Volder, M. Elastic inflatable actuators for soft robotic applications. Adv. Mater. 2017, 29, 1604977.

2

Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.

3

Hu, Y.; Wu, G.; Lan, T.; Zhao, J. J; Liu, Y.; Chen, W. A graphene-based bimorph structure for design of high performance photoactuators. Adv. Mater. 2015, 27, 7867–7873.

4

Mu, J. K.; Wang, G.; Yan, H. P.; Li, H. Y.; Wang, X. M.; Gao, E. L.; Hou, C. Y.; Pham, A. T. C.; Wu, L. J.; Zhang, Q. H. et al. Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 2018, 9, 590.

5

Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921.

6

Zhao, Q.; Liang, Y. H.; Ren, L.; Yu, Z. L.; Zhang, Z. H.; Ren, L. Q. Bionic intelligent hydrogel actuators with multimodal deformation and locomotion. Nano Energy 2018, 51, 621–631.

7

Du, L.; Xu, Z. Y.; Huang, C. L.; Zhao, F. Y.; Fan, C. J.; Dai, J.; Yang, K. K.; Wang, Y. Z. From a body temperature-triggered reversible shape-memory material to high-sensitive bionic soft actuators. Appl. Mater. Today 2020, 18, 100463.

8

Hu, Y.; Liu, J. Q.; Chang, L. F.; Yang, L. L.; Xu, A. F.; Qi, K.; Lu, P.; Wu, G.; Chen, W.; Wu, Y. C. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite. Adv. Funct. Mater. 2017, 27, 1704388.

9

Chen, H.; Ge, Y. H.; Ye, S. J.; Zhu, Z. F.; Tu, Y. F.; Ge, D. T.; Xu, Z.; Chen, W.; Yang, X. M. Water transport facilitated by carbon nanotubes enables a hygroresponsive actuator with negative hydrotaxis. Nanoscale 2020, 12, 6104–6110.

10

Yu, L.; Peng, R.; Rivers, G.; Zhang, C.; Si, P. X.; Zhao, B. X. Multifunctional liquid crystal polymer network soft actuators. J. Mater. Chem. A 2020, 8, 3390–3396.

11

Ning, W.; Wang, Z. H.; Liu, P.; Zhou, D. L.; Yang, S. Y.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. Carbon 2018, 139, 1136–1143.

12

Jing, L.; Li, K. R.; Yang, H. T.; Chen, P. Y. Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Mater. Horiz. 2020, 7, 54–57.

13

Chen, P. Y.; Zhang, M. K.; Liu, M. C.; Wong, I. Y.; Hurt, R. H. Ultrastretchable graphene-based molecular barriers for chemical protection, detection, and actuation. ACS Nano 2018, 12, 234–244.

14

Xing, S. T.; Wang, P. P.; Liu, S. Q.; Xu, Y. H.; Zheng, R. M.; Deng, Z. F.; Peng, Z. F.; Li, J. Y.; Wu, Y. Y.; Liu, L. A shape-memory soft actuator integrated with reversible electric/moisture actuating and strain sensing. Compos. Sci. Technol. 2020, 193, 108133.

15

Amjadi, M.; Sitti, M. Self-sensing paper actuators based on graphite-carbon nanotube hybrid films. Adv. Sci. 2018, 5, 1800239.

16

Chen, L. Z.; Weng, M.; Zhou, P. D.; Huang, F.; Liu, C. H.; Fan, S. S.; Zhang, W. Graphene-based actuator with integrated-sensing function. Adv. Funct. Mater. 2019, 29, 1806057.

17

Zhao, H. T.; Hu, R.; Li, P.; Gao, A. Z.; Sun, X. T.; Zhang, X. H.; Qi, X. J.; Fan, Q.; Liu, Y. D.; Liu, X. Q. et al. Soft bimorph actuator with real-time multiplex motion perception. Nano Energy 2020, 76, 104926.

18

Tian, J. J.; Shi, R.; Liu, Z.; Ouyang, H.; Yu, M.; Zhao, C. C.; Zou, Y.; Jiang, D. J.; Zhang, J. S.; Li, Z. Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation. Nano Energy 2019, 59, 705–714.

19

Luo, Z. L.; Liu, C. H.; Fan, S. S. A super compact self-powered device based on paper-like supercapacitors. J. Mater. Chem. A 2019, 7, 3642–3647.

20

Wen, Z.; Shen, Q. Q.; Sun, X. H. Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 2017, 9, 45.

21

Feng, Y. G.; Zhang, L. Q.; Zheng, Y. B.; Wang, D. A.; Zhou, F.; Liu, W. M. Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 2019, 55, 260–268.

22

Han, Y.; Wang, W. Q.; Zou, J. D.; Li, Z.; Cao, X.; Xu, S. M. Self-powered energy conversion and energy storage system based on triboelectric nanogenerator. Nano Energy 2020, 76, 105008.

23

Wen, F.; Wang, H.; He, T. Y. Y.; Shi, Q. F.; Sun, Z. D.; Zhu, M. L.; Zhang, Z. X.; Cao, Z. G.; Dai, Y. B.; Zhang, T. et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266.

24

Ke, K. H.; Chung, C. K. High-performance Al/PDMS TENG with novel complex morphology of two-height microneedles array for high-sensitivity force-sensor and self-powered application. Small 2020, 16, 2001209.

25

Khan, U.; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432.

26

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

27

Xi, Y.; Guo, H. Y.; Zi, Y. L.; Li, X. G.; Wang, J.; Deng, J. N.; Li, S. M.; Hu, C. G.; Cao, X.; Wang, Z. L. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Adv. Energy Mater. 2017, 7, 1602397.

28

Chen, S. E.; Pang, Y. K.; Yuan, H. Y.; Tan, X. B.; Cao, C. Y. Smart soft actuators and grippers enabled by self-powered tribo-skins. Adv. Mater. Technol. 2020, 5, 1901075.

29

Chen, J.; Han, K.; Luo, J. J.; Xu, L.; Tang, W.; Wang, Z. L. Soft robots with self-powered configurational sensing. Nano Energy 2020, 77, 105171.

30

Jin, T.; Sun, Z. D.; Li, L.; Zhang, Q.; Zhu, M. L.; Zhang, Z. X.; Yuan, G. J.; Chen, T.; Tian, Y. Z.; Hou, X. Y. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

31

Dhawan, R.; Madusanka, P.; Hu, G. Y.; Debord, J.; Tran, T.; Maggio, K.; Edwards, H.; Lee, M. Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities. Nat. Commun. 2020, 11, 4362.

32

Elyamny, S.; Dimaggio, E.; Magagna, S.; Narducci, D.; Pennelli, G. High power thermoelectric generator based on vertical silicon nanowires. Nano Lett. 2020, 20, 4748–4753.

33

Jung, Y. S.; Jeong, D. H.; Kang, S. B.; Kim, F.; Jeong, M. H.; Lee, K. S.; Son, J. S.; Baik, J. M.; Kim, J. S.; Choi, K. J. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy 2017, 40, 663–672.

34

Zhang, X. F.; Gao, W. Q.; Su, X. W.; Wang, F. L.; Liu, B. S.; Wang, J. J.; Liu, H.; Sang, Y. H. Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system. Nano Energy 2018, 48, 481–488.

35

Zhao, W. R.; Zhang, F. J.; Dai, X. J.; Jin, W. L.; Xiang, L. Y.; Ding, J. M.; Wang, X.; Wan, Y.; Shen, H. G.; He, Z. H. et al. Enhanced thermoelectric performance of n-type organic semiconductor via electric field modulated photo-thermoelectric effect. Adv. Mater. 2020, 32, 2000273.

36

Cui, L. F.; Zhang, P. P.; Xiao, Y. K.; Liang, Y.; Liang, H. X.; Cheng, Z. H.; Qu, L. T. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture. Adv. Mater. 2018, 30, 1706805.

37

Lundeberg, M. B.; Gao, Y. D.; Woessner, A.; Tan, C.; Alonso-González, P.; Watanabe, K.; Taniguchi, T.; Hone, J.; Hillenbrand, R.; Koppens, F. H. L. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 2017, 16, 204–207.

38

Juntunen, T.; Jussila, H.; Ruoho, M.; Liu, S. H.; Hu, G. H.; Albrow-Owen, T.; Ng, L. W. T.; Howe, R. C. T.; Hasan, T.; Sun, Z. P. et al. Inkjet Printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mater. 2018, 28, 1800480.

39

Huang, L.; Santiago, D.; Loyselle, P.; Dai, L. M. Graphene-based nanomaterials for flexible and wearable supercapacitors. Small 2018, 14, 1800879.

40

Torrisi, F.; Carey, T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 2018, 23, 73–96.

41

Zhang, D.; Song, Y. D.; Ping, L.; Xu, S. W.; Yang, D.; Wang, Y. H.; Yang, Y. Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Res. 2019, 12, 2982–2987.

42

Chen, X. X.; Liu, X.; Li, S. H.; Wang, W. M.; Wei, D.; Wu, Y. L.; Liu, Z. F. Tunable wideband slot antennas based on printable graphene inks. Nanoscale 2020, 12, 10949–10955.

43

Tung, T. T.; Yoo, J.; Alotaibi, F. K.; Nine, M. J.; Karunagaran, R.; Krebsz, M.; Nguyen, G. T.; Tran, D. N. H.; Feller, J. F.; Losic, D. Graphene oxide-assisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors. ACS Appl. Mater. Interfaces 2016, 8, 16521–16532.

44

Tung, V. C.; Huang, J. H.; Kim, J.; Smith, A. J.; Chu, C. W.; Huang, J. X. Towards solution processed all-carbon solar cells: A perspective. Energ Environ. Sci. 2012, 5, 7810–7818.

45

Wang, X. D.; Jiao, N. D.; Tung, S.; Liu, L. Q. Photoresponsive graphene composite bilayer actuator for soft robots. ACS Appl. Mater. Interfaces 2019, 11, 30290–30299.

46

Cheng, H. H.; Zhao, F.; Xue, J. L.; Shi, G. Q.; Jiang, L.; Qu, L. T. One single graphene oxide film for responsive actuation. ACS Nano 2016, 10, 9529–9535.

Video
12274_2021_3791_MOESM1_ESM.mp4
12274_2021_3791_MOESM2_ESM.mp4
File
12274_2021_3791_MOESM3_ESM.pdf (703.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 May 2021
Revised: 02 August 2021
Accepted: 03 August 2021
Published: 29 August 2021
Issue date: June 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51773039 and 11974076), Natural Science Foundation of Fujian Province (No. 2020J02036), and Program for New Century Excellent Talents in University of Fujian Province (No. J1-1318).

Return