Journal Home > Volume 15 , Issue 3

Ternary two-dimentional (2D) materials exhibit diverse physical properties depending on their composition, structure, and thickness. Through forming heterostructures with other binary materials that show similar structure, there can be numerous potential applications of these ternary 2D materials. In this work, we reported the structure of few-layer CrPS4 by X-ray diffraction, transmission electron microscope, and electron-density distribution calculation. We also demonstrated a new application of the CrPS4/MoS2 heterobilayer: visible-infrared photodetectors with type-II staggered band alignment at room temperature. The response of the heterostructure to infrared light results from a strong interlayer coupling that reduces the energy interval in the junction area. Since the intrinsic bandgap of individual components determines wavelengths, the decrease in energy interval allows better detection of light that has a longer wavelength. We used photoluminescence (PL) spectroscopy, Kelvin probe force microscopy (KPFM) under illumination, and electrical transport measurements to verify the photoinduced charge separation between the CrPS4/MoS2 heterostructures. At forward bias, the device functioned as a highly sensitive photodetector, as the wavelength-dependent photocurrent measurement achieved the observation of optical excitation from 532 to 1,450 nm wavelength. Moreover, the photocurrent caused by interlayer exciton reached around 1.2 nA at 1,095 nm wavelength. Our demonstration of the strong interlayer coupling in the CrPS4/MoS2 heterostructure may further the understanding of the essential physics behind binary-ternary transition metal chalcogenides heterostructure and pave a way for their potential applications in visible-infrared devices.


menu
Abstract
Full text
Outline
About this article

Binary-ternary transition metal chalcogenides interlayer coupling in van der Waals type-II heterostructure for visible-infrared photodetector with efficient suppression dark currents

Show Author's information Guoliang Xu1Danmin Liu1( )Songyu Li2Yi Wu1Zhenlu Zhang3Shaobo Wang1Zikun Huang1Yongzhe Zhang4( )
Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100083, China
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Key Laboratory of Optoelectronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Abstract

Ternary two-dimentional (2D) materials exhibit diverse physical properties depending on their composition, structure, and thickness. Through forming heterostructures with other binary materials that show similar structure, there can be numerous potential applications of these ternary 2D materials. In this work, we reported the structure of few-layer CrPS4 by X-ray diffraction, transmission electron microscope, and electron-density distribution calculation. We also demonstrated a new application of the CrPS4/MoS2 heterobilayer: visible-infrared photodetectors with type-II staggered band alignment at room temperature. The response of the heterostructure to infrared light results from a strong interlayer coupling that reduces the energy interval in the junction area. Since the intrinsic bandgap of individual components determines wavelengths, the decrease in energy interval allows better detection of light that has a longer wavelength. We used photoluminescence (PL) spectroscopy, Kelvin probe force microscopy (KPFM) under illumination, and electrical transport measurements to verify the photoinduced charge separation between the CrPS4/MoS2 heterostructures. At forward bias, the device functioned as a highly sensitive photodetector, as the wavelength-dependent photocurrent measurement achieved the observation of optical excitation from 532 to 1,450 nm wavelength. Moreover, the photocurrent caused by interlayer exciton reached around 1.2 nA at 1,095 nm wavelength. Our demonstration of the strong interlayer coupling in the CrPS4/MoS2 heterostructure may further the understanding of the essential physics behind binary-ternary transition metal chalcogenides heterostructure and pave a way for their potential applications in visible-infrared devices.

Keywords: MoS2, heterostructure, CrPS4, interlayer transition, visible-infrared photodetector, type-II band alignment

References(39)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602.

3

Ma, Y. Q.; Liu, B. L.; Zhang, A. Y.; Chen, L.; Fathi, M.; Shen, C. F.; Abbas, A. N.; Ge, M. Y.; Mecklenburg, M.; Zhou, C. W. Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices. ACS Nano 2015, 9, 7383–7391.

4

Kroemer, H. Heterostructure bipolar transistors and integrated circuits. Proc. IEEE 1982, 70, 13–25.

5

Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.

6

Zhang, C. D.; Chuu, C.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

7

Yu, Y. F.; Hu, S.; Su, L. Q.; Huang, L. J.; Liu, Y.; Jin, Z. H.; Purezky, A. A.; Geohegan, D. B.; Kim, K. W.; Zhang, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 2015, 15, 486–491.

8

Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin Type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.

9

Wang, G. C.; Li, L.; Fan, W. H.; Wang, R. Y.; Zhou, S. S.; Lü, J. T.; Gan, L.; Zhai, T. Y. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface Plasmon resonance. Adv. Funct. Mater. 2018, 28, 1800339.

10

Ferloni, P.; Scagliotti, M. Magnetic phase transitions in iron and nickel phosphorus trichalcogenides. Thermochim. Acta 1989, 139, 197–203.

11

Du, K. Z.; Wang, X. Z.; Liu, Y.; Hu, P.; Utama, M. I. B.; Gan, C. K.; Xiong, Q. H.; Kloc, C. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 2016, 10, 1738–1743.

12

Lee, J.; Ko, T. Y.; Kim, J. H.; Bark, H.; Kang, B.; Jung, S. G.; Park, T.; Lee, Z.; Ryu, S.; Lee, C. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 2017, 11, 10935–10944.

13

Peng, Y. X.; Ding, S. L.; Cheng, M.; Hu, Q. F.; Yang, J.; Wang, F. G.; Xue, M. Z.; Liu, Z.; Lin, Z. C.; Avdeev, M. et al. Magnetic structure and metamagnetic transitions in the van der Waals antiferromagnet CrPS4. Adv. Mater. 2020, 32, 2001200.

14

Swaminathan, K.; Grassman, T. J.; Yang, L. M.; Gu, Q.; Mills, M. J.; Ringel, S. A. Optically-aligned visible/near-infrared dual-band photodetector materials and devices on GaAs using metamorphic epitaxy. J. Appl. Phys. 2011, 110, 063109.

15

Gao, Y.; Lei, S. J.; Kang, T. T.; Fei, L. F.; Mak, C. L.; Yuan, J.; Zhang, M. G.; Li, S. J.; Bao, Q. L.; Zeng, Z. M. et al. Bias-switchable negative and positive photoconductivity in 2D FePS3 ultraviolet photodetectors. Nanotechnology 2018, 29, 244001.

16

Hatch, S. M.; Briscoe, J.; Dunn, S. A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater. 2013, 25, 867–871.

17

Varghese, A.; Saha, D.; Thakar, K.; Jindal, V.; Ghosh, S.; Medhekar, N. V.; Ghosh, S.; Lodha, S. Near-direct bandgap WSe2/ReS2 Type-II p-n heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics. Nano Lett. 2020, 20, 1707–1717.

18

Diehl, R.; Carpentier, C. D. The crystal structure of chromium thiophosphate, CrPS4. Acta Crystallogr. B 1977, 33, 1399–1404.

19

Wu, H. B.; Chen, H. P. Probing the properties of lattice vibrations and surface electronic states in magnetic semiconductor CrPS4. RSC Adv. 2019, 9, 30655–30658.

20

Budniak, A. K.; Killilea, N. A.; Zelewski, S. J.; Sytnyk, M.; Kauffmann, Y.; Amouyal, Y.; Kudrawiec, R.; Heiss, W.; Lifshitz, E. Exfoliated CrPS4 with promising photoconductivity. Small 2020, 16, 1905924.

21

Tian, N.; Yang, Y. H.; Liu, D. M.; Liu, X. L.; Tan, P. H.; Zhang, D.; Chang, K.; Li, H.; Zhao, M. J.; Li, J. R. et al. High anisotropy in tubular layered exfoliated KP15. ACS Nano 2018, 12, 1712–1719.

22

Li, S. Y.; Chen, X. Q.; Liu, F. M.; Chen, Y. F.; Liu, B. Y.; Deng, W. J.; An, B. X.; Chu, F. H.; Zhang, G. Q.; Li, S. L. et al. Enhanced performance of a CVD MoS2 photodetector by chemical in situ n-type doping. ACS Appl. Mater. Interfaces 2019, 11, 11636–11644.

23

Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

24

Gaur, A. P. S.; Sahoo, S.; Scott, J. F.; Katiyar, R. S. Electron–phonon interaction and double-resonance Raman studies in monolayer WS2. J. Phys. Chem. C 2015, 119, 5146–5151.

25

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

26

Wood, D. L.; Ferguson, J.; Knox, K.; Dillon, J. F. Jr. Crystal-field spectra of d3, 7 ions. III. Spectrum of Cr3+ in various octahedral crystal fields. J. Chem. Phys. 1963, 39, 890–898.

27

Maturová, K.; Kemerink, M.; Wienk, M. M.; Charrier, D. S. H.; Janssen, R. A. J. Scanning kelvin probe microscopy on bulk heterojunction polymer blends. Adv. Funct. Mater. 2009, 19, 1379–1386.

28

Gupta, S.; Batra, Y.; Mehta, B. R.; Satsangi, V. R. Study of charge separation and interface formation in a single nanorod CdS–CuxS heterojunction solar cell using kelvin probe force microscopy. Nanotechnology 2013, 24, 255703.

29

Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.

30

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

31

Ross, J. S.; Rivera, P.; Schaibley, J.; Lee-Wong, E.; Yu, H. Y.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Mandrus, D.; Cobden, D. et al. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 2017, 17, 638–643.

32

Yu, H. Y.; Wang, Y.; Tong, Q. J.; Xu, X. D.; Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 2015, 115, 187002.

33

Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J. U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 2017, 11, 4041–4050.

34

Qi, T. L.; Gong, Y. P.; Li, A. L.; Ma, X. M.; Wang, P. P.; Huang, R.; Liu, C.; Sakidja, R.; Wu, J. Z.; Chen, R. et al. Interlayer transition in a vdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors. Adv. Funct. Mater. 2020, 30, 1905687.

35

Wang, F. K.; Gao, T.; Zhang, Q.; Hu, Z. Y.; Jin, B.; Li, L.; Zhou, X.; Li, H. Q.; Van Tendeloo, G.; Zhai, T. Y. Liquid-alloy-assisted growth of 2D ternary Ga2In4S9 toward high-performance UV photodetection. Adv. Mater. 2019, 31, 1806306.

36

Jin, B.; Zuo, N.; Hu, Z. Y.; Cui, W. J.; Wang, R. Y.; Van Tendeloo, G.; Zhou, X.; Zhai, T. Y. Excellent excitonic photovoltaic effect in 2D CsPbBr3/CdS heterostructures. Adv. Funct. Mater. 2020, 30, 2006166.

37

Wang, F. K.; Luo, P.; Zhang, Y.; Huang, Y.; Zhang, Q. F.; Li, Y.; Zhai, T. Y. Band structure engineered tunneling heterostructures for high-performance visible and near-infrared photodetection. Sci. China Mater. 2020, 63, 1537–1547.

38

Wang, H. L.; Wang, X. D.; Chen, Y.; Zhang, S. K.; Jiang, W.; Zhang, X.; Qin, J. J.; Wang, J.; Li, X. G.; Pan, Y. Y. et al. Extremely low dark current MoS2 photodetector via 2D halide perovskite as the electron reservoir. Adv. Opt. Mater. 2020, 8, 1901402.

39

Zhou, N.; Wang, R. Y.; Zhou, X.; Song, H. Y.; Xiong, X.; Ding, Y.; Lü, J. T.; Gan, L.; Zhai, T. Y. P-GaSe/N-MoS2 vertical heterostructures synthesized by van der Waals epitaxy for photoresponse modulation. Small 2018, 14, 1702731.

Publication history
Copyright
Acknowledgements

Publication history

Received: 04 May 2021
Revised: 14 July 2021
Accepted: 03 August 2021
Published: 16 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgement

The authors would like to appreciate the very extensive grammar and content editing by and helpful discussions with Ziwei Zhang. This work was financially supported by the National Natural Science Foundation of China (No. NSFC 51972006).

Return