Journal Home > Volume 15 , Issue 3

The major obstacle for selective CO2 photoreduction to C2 hydrocarbons lies in the difficulty of C–C coupling, which is usually restrained by the repulsive dipole–dipole interaction between adjacent carbonaceous intermediates. Herein, we first construct semiconducting atomic layers featuring abundant Metaln+-Metalδ+ pair sites (0 < δ < n), aiming to tailor asymmetric charge distribution on the carbonaceous intermediates and hence trigger their C–C coupling for selectively yielding C2 hydrocarbons. As an example, we first fabricate Co-doped NiS2 atomic layers possessing abundant Ni2+-Niδ+ (0 < δ < 2) pairs, where Co doping strategy can ensure higher amount of Ni 2+-Niδ+ pair sites. In-situ Fourier-transform infrared spectroscopy, quasi in-situ Raman spectroscopy and density-functional-theory calculations disclose the Ni2+-Niδ+ pair sites endow the adjacent CO intermediates with distinct charge densities, thus decreasing their dipole–dipole repulsion and hence lowering the rate-limiting C–C coupling reaction barrier. As a result, in simulated flue gas (10% CO2 balance 90% N2), the ethylene selectivity for Co-doped NiS2 atomic layers reaches up to 74.3% with an activity of 70 μg·g−1·h−1, outperforming previously reported photocatalysts under similar operating conditions.


menu
Abstract
Full text
Outline
About this article

Metaln +-Metalδ + pair sites steer C–C coupling for selective CO2 photoreduction to C2 hydrocarbons

Show Author's information Weiwei Shao1,§Xiaodong Li1,§Juncheng Zhu1,§Xiaolong Zu1Liang Liang1Jun Hu2Yang Pan2Junfa Zhu2Wensheng Yan2Yongfu Sun1( )Yi Xie1
Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China

§ Weiwei Shao, Xiaodong Li, and Juncheng Zhu contributed equally to this work.

Abstract

The major obstacle for selective CO2 photoreduction to C2 hydrocarbons lies in the difficulty of C–C coupling, which is usually restrained by the repulsive dipole–dipole interaction between adjacent carbonaceous intermediates. Herein, we first construct semiconducting atomic layers featuring abundant Metaln+-Metalδ+ pair sites (0 < δ < n), aiming to tailor asymmetric charge distribution on the carbonaceous intermediates and hence trigger their C–C coupling for selectively yielding C2 hydrocarbons. As an example, we first fabricate Co-doped NiS2 atomic layers possessing abundant Ni2+-Niδ+ (0 < δ < 2) pairs, where Co doping strategy can ensure higher amount of Ni 2+-Niδ+ pair sites. In-situ Fourier-transform infrared spectroscopy, quasi in-situ Raman spectroscopy and density-functional-theory calculations disclose the Ni2+-Niδ+ pair sites endow the adjacent CO intermediates with distinct charge densities, thus decreasing their dipole–dipole repulsion and hence lowering the rate-limiting C–C coupling reaction barrier. As a result, in simulated flue gas (10% CO2 balance 90% N2), the ethylene selectivity for Co-doped NiS2 atomic layers reaches up to 74.3% with an activity of 70 μg·g−1·h−1, outperforming previously reported photocatalysts under similar operating conditions.

Keywords: C–C coupling, pair sites, CO2 photoreduction , ethylene

References(56)

1

Li, Z. H.; Shi, R.; Zhao, J. Q.; Zhang, T. R. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 2021, inpress.

2

Ulmer, U.; Dingle, T.; Duchesne, P. N.; Morris, R. H.; Tavasoli, A.; Wood, T.; Ozin, G. A. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 2019, 10, 3169.

3

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; Van De Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? . Joule 2018, 2, 825–832.

4

Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

5

Kim, D.; Sakimoto, K. K.; Hong, D. C.; Yang, P. D. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem., Int. Ed. 2015, 54, 3259–3266.

6

Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934–944.

7

Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. 2021, 14, 730–737.

8

Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

9

Nahar, S.; Zain, M. F. M.; Kadhum, A. A. H.; Hasan, H. A.; Hasan, M. R. Advances in photocatalytic CO2 reduction with water: A review. Materials 2017, 10, 629.

10

Dai, S. Y.; Chen, C. L. Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers. Angew. Chem. 2016, 128, 13475–13479.

11

Li, J.; Wang, Z. Y.; McCallum, C.; Xu, Y.; Li, F. W.; Wang, Y. H.; Gabardo, C. M.; Dinh, C. T.; Zhuang, T. T.; Wang, L. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2019, 2, 1124–1131.

12

De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, eaav3506.

13

Garza, A. J.; Bell, A. T.; Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products. ACS Catal. 2018, 8, 1490–1499.

14

Handoko, A. D.; Wei, F. X.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922–934.

15

An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.

16

Wang, X.; Wang, Z. Y.; Zhuang, T. T.; Dinh, C. T.; Li, J.; Nam, D. H.; Li, F. W.; Huang, C. W.; Tan, C. S.; Chen, Z. T. et al. Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nat. Commun. 2019, 10, 5186.

17

Rahman, M. M.; Ahmed, J.; Asiri, A. M.; Siddiquey, I. A.; Hasnat, M. A. Development of 4-methoxyphenol chemical sensor based on NiS2-CNT nanocomposites. J. Taiwan Inst. Chem. Eng. 2016, 64, 157–165.

18

Ni, W. Y.; Krammer, A.; Hsu, C. S.; Chen, H. M.; Schüler, A.; Hu, X. L. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew. Chem., Int. Ed. 2019, 58, 7445–7449.

19

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

20

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

21

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

22

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

23

Ling, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du, X. W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.

24

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

25

Shek, C. H.; Lai, J. K. L.; Lin, G. M. Investigation of interface defects in nanocrystalline SnO2 by positron annihilation. J. Phys. Chem. Solids 1999, 60, 189–193.

26

Yin, J.; Jin, J.; Zhang, H.; Lu, M.; Peng, Y.; Huang, B. L.; Xi, P. X.; Yan, C. H. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 18676–18682.

27

De Las Heras, C.; Agulló-Rueda, F. Raman spectroscopy of NiSe2 and NiS2-xSex (0<x< 2) thin films.J. Phys.: Condens. Matter 2000, 12, 5317–5324.

DOI
28

Zhang, J.; An, Z.; Zhu, Y. R.; Shu, X.; Song, H. Y.; Jiang, Y. T.; Wang, W. L.; Xiang, X.; Xu, L. L.; He, J. Ni0/Niδ+ synergistic catalysis on a nanosized Ni surface for simultaneous formation of C–C and C–N bonds. ACS Catal. 2019, 9, 11438–11446.

29

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965.

30

Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni–Co–A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 5241–5247.

31

Wang, M.; Zhang, W. J.; Zhang, F. F.; Zhang, Z. H.; Tang, B.; Li, J. P.; Wang, X. G. Theoretical expectation and experimental implementation of in situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production. ACS Catal. 2019, 9, 1489–1502.

32

Ishiguro, S.; Ozutsumi, K. Thermodynamics and structure of isothiocyanato complexes of manganese (II), cobalt (II), and nickel (II) ions in N, N-dimethylformamide. Inorg. Chem. 1990, 29, 1117–1123.

33

Wang, Y.; Zhao, J.; Wang, T. F.; Li, Y. X.; Li, X. Y.; Yin, J.; Wang, C. Y. CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity. J. Catal. 2016, 337, 293–302.

34

Wu, J. C. S.; Huang, C. W. In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front. Chem. Eng. China 2010, 4, 120–126.

35

Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

36

Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.

37

Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. 2017, 129, 3675–3678.

38

Chung, C.; Lee, M.; Choe, E. K. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 2004, 58, 417–420.

39

El-Hendawy, A. N. A. Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J. Anal. Appl. Pyrolysis 2006, 75, 159–166.

40

Xiao, H.; Cheng, T.; Goddard III, W. A.; Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 2016, 138, 483–486.

41

Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.

42

Schmitt, K. G.; Gewirth, A. A. In situ surface-enhanced Raman spectroscopy of the electrochemical reduction of carbon dioxide on silver with 3,5-diamino-1,2,4-triazole. J. Phys. Chem. C 2014, 118, 17567–17576.

43

Yang, H.; Hu, Y. W.; Chen, J. J.; Balogun, M. S.; Fang, P. P.; Zhang, S. Q.; Chen, J.; Tong, Y. X. Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 2019, 9, 1901396.

44

Klingan, K.; Kottakkat, T.; Jovanov, Z. P.; Jiang, S.; Pasquini, C.; Scholten, F.; Kubella, P.; Bergmann, A.; Cuenya, B. R.; Roth, C. et al. Reactivity determinants in electrodeposited Cu foams for electrochemical CO2 reduction. ChemSusChem 2018, 11, 3449–3459.

45

Chernyshova, I. V.; Somasundaran, P.; Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci. USA 2018, 115, E9261–E9270.

46

Mbonyiryivuze, A.; Omollo, I.; Ngom, B. D.; Mwakikunga, B.; Dhlamini, S. M.; Park, E.; Maaza, M. Natural dye sensitizer for Grätzel cells: Sepia melanin. Phys. Mater. Chem. 2015, 3, 1–6.

47

Ho, M.; Pemberton, J. E. Alkyl chain conformation of octadecylsilane stationary phases by Raman spectroscopy. 1. Temperature dependence. Anal. Chem. 1998, 70, 4915–4920.

48

Baranowska-Korczyc, A.; Warowicka, A.; Jasiurkowska-Delaporte, M.; Grześkowiak, B.; Jarek, M.; Maciejewska, B. M.; Jurga-Stopa, J.; Jurga, S. Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth. RSC Adv. 2016, 6, 19647–19656.

49

Panicker, C. Y.; Varghese, H. T.; Philip, D. FT-IR, FT-Raman and SERS spectra of Vitamin C. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2006, 65, 802–804.

50

Jones, A. G.; Powell, D. B. Low-frequency vibrational spectra of triphenylphosphine and triphenylarsine complexes of d10 gold(1) and Ni(0) . Spectrochim. Acta A: Mol. Spectrosc. 1974, 30, 563–570.

51

Krasser, W.; Renouprez, A. J. Raman scattering of hydrogen chemisorbed on silica-supported nickel. J. Raman Spectrosc. 1979, 8, 92–94.

52

Dokko, K.; Mohamedi, M.; Anzue, N.; Itoh, T.; Uchida, I. In situ Raman spectroscopic studies of LiNixMn2−xO4 thin film cathode materials for lithium ion secondary batteries. J. Mater. Chem. 2002, 12, 3688–3693.

53

Bickley, R. I.; Edwards, H. G. M.; Gustar, R.; Rose, S. J. Synthesis and vibrational spectroscopic characterisation of nickel (II) propionate tetrahydrate, Ni(CH3CH2COO)2·4H2O, and its aqueous solution. J. Mol. Struct. 1991, 248, 237–250.

54

Marzouk, H. A.; Bradley, E. B. Normal unenhanced Raman spectra of 13CO adsorbed on Ni(111): A comparison study. Spectrosc. Lett. 1985, 18, 791–814.

55

Chang, C. C.; Li, E. Y.; Tsai, M. K. A computational exploration of CO2 reduction via CO dimerization on mixed-valence copper oxide surface. Phys. Chem. Chem. Phys. 2018, 20, 16906–16909.

56

Li, G. N.; Wang, B.; Resasco, D. E. Water-mediated heterogeneously catalyzed reactions. ACS Catal. 2020, 10, 1294–1309.

Publication history
Copyright
Acknowledgements

Publication history

Received: 05 July 2021
Revised: 02 August 2021
Accepted: 02 August 2021
Published: 04 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by National Key R&D Program of China (Nos. 2019YFA0210004 and 2017YFA0207301), National Natural Science Foundation of China (Nos. 21975242, U2032212, 21890754, and 21805267), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), Youth Innovation Promotion Association of CAS (No. CX2340007003), Major Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2020HSC-CIP003), Key Research Program of Frontier Sciences of CAS (No. QYZDY-SSW-SLH011), the Fok Ying-Tong Education Foundation (No. 161012). Supercomputing USTC and National Supercomputing Center in Shenzhen are acknowledged for computational support.

Return