Journal Home > Volume 15 , Issue 3

Creating vacancy is often highly effective in enhancing the hydrogen evolution performance of transition metal-based catalysts. Vacancy-rich Ni nanosheets have been fabricated via topochemical formation of two-dimentional (2D) Ni2B on graphene precursor followed by boron leaching. Anchored on graphene, a few atomic layered Ni2B nanosheets are first obtained by reduction and annealing. Large number of atomic vacancies are then generated in the Ni2B layer via leaching boron atoms. When used for hydrogen evolution reaction (HER), the vacancy-rich Ni/Ni(OH)2 heterostructure nanosheets demonstrate remarkable performance with a low overpotential of 159 mV at a current density of 10 mA·cm−2 in alkaline solution, a dramatic improvement over 262 mV of its precursor. This enhancement is associated with the formation of vacancies which introduce more active sites for HER along Ni/Ni(OH)2 heterointerfaces. This work offers a facile and universal route to introduce vacancies and improve catalytic activity.


menu
Abstract
Full text
Outline
About this article

Boron leaching: Creating vacancy-rich Ni for enhanced hydrogen evolution

Show Author's information Chao Han1Weijie Li2Jiazhao Wang2Zhenguo Huang1,3( )
School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
Institute for Superconducting & Electronic Materials, AIIM Building, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia
Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia

Abstract

Creating vacancy is often highly effective in enhancing the hydrogen evolution performance of transition metal-based catalysts. Vacancy-rich Ni nanosheets have been fabricated via topochemical formation of two-dimentional (2D) Ni2B on graphene precursor followed by boron leaching. Anchored on graphene, a few atomic layered Ni2B nanosheets are first obtained by reduction and annealing. Large number of atomic vacancies are then generated in the Ni2B layer via leaching boron atoms. When used for hydrogen evolution reaction (HER), the vacancy-rich Ni/Ni(OH)2 heterostructure nanosheets demonstrate remarkable performance with a low overpotential of 159 mV at a current density of 10 mA·cm−2 in alkaline solution, a dramatic improvement over 262 mV of its precursor. This enhancement is associated with the formation of vacancies which introduce more active sites for HER along Ni/Ni(OH)2 heterointerfaces. This work offers a facile and universal route to introduce vacancies and improve catalytic activity.

Keywords: hydrogen evolution reaction (HER), two-dimensional structure, Ni2B , boron leaching, vacancies

References(49)

1

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

2

Chornet, E.; Czernik, S. Harnessing hydrogen. Nature 2002, 418, 928–929.

3

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

4

Wang, J.; Liao, T.; Wei, Z. Z.; Sun, J. T.; Guo, J. J.; Sun, Z. Q. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy. Small Methods 2021, 5, 2000988.

5

Song, Y. H.; Xu, B. S.; Liao, T.; Guo, J. J.; Wu, Y. C.; Sun, Z. Q. Electronic structure tuning of 2D metal (hydr)oxides nanosheets for electrocatalysis. Small 2021, 17, 2002240.

6

Li, W. J.; Han, C.; Zhang, K.; Chou, S. L.; Dou, S. X. Strategies for boosting carbon electrocatalysts for the oxygen reduction reaction in non-aqueous metal–air battery systems. J. Mater. Chem. A 2021, 9, 6671–6693.

7

He, J. Y.; Zou, Y. Q.; Wang, S. Y. Defect engineering on electrocatalysts for gas-evolving reactions. Dalton Trans. 2019, 48, 15–20.

8

Wang, Y. F.; Han, P.; Lv, X. M.; Zhang, L. J.; Zheng, G. F. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551–2582.

9

Ortiz-Medina, J.; Wang, Z. P.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X. D.; Terrones, M.; Endo, M. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv. Mater. 2019, 31, 1805717.

10

Wang, Y. Y.; Li, Z. G.; Zhang, P.; Pan, Y.; Zhang, Y.; Cai, Q.; Silva, R. P.; Liu, J.; Zhang, G. X.; Sun, X. M. et al. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. Nano Energy 2021, 87, 106147.

11

Jia, Y.; Jiang, K.; Wang, H. T.; Yao, X. D. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371–1397.

12

Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

13

Zhao, Y. X.; Tang, M. T.; Wu, S. D.; Geng, J.; Han, Z. J.; Chan, K. R.; Gao, P. Q.; Li, H. Rational design of stable sulfur vacancies in molybdenum disulfide for hydrogen evolution. J. Catal. 2020, 382, 320–328.

14

Choi, S.; Park, Y.; Yang, H.; Jin, H.; Tomboc, G. M.; Lee, K. Vacancy-engineered catalysts for water electrolysis. CrystEngComm 2020, 22, 1500–1513.

15

Gong, F. L.; Ye, S.; Liu, M. M.; Zhang, J. W.; Gong, L. H.; Zeng, G.; Meng, E. C.; Su, P. P.; Xie, K. F.; Zhang, Y. H. et al. Boosting electrochemical oxygen evolution over yolk–shell structured O-MoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles. Nano Energy 2020, 78, 105284.

16

Hong, Y. R.; Kim, K. M.; Ryu, J. H.; Mhin, S.; Kim, J.; Ali, G.; Chung, K. Y.; Kang, S.; Han, H. Dual-phase engineering of nickel boride-hydroxide nanoparticles toward high-performance water oxidation electrocatalysts. Adv. Funct. Mater. 2020, 30, 2004330.

17

Li, Y. X.; Zhang, W. Z.; Li, H.; Yang, T. Y.; Peng, S. Q.; Kao, C.; Zhang, W. Y. Ni-B coupled with borate-intercalated Ni(OH)2 for efficient and stable electrocatalytic and photocatalytic hydrogen evolution under low alkalinity. Chem. Eng. J. 2020, 394, 124928.

18

Glavee, G. N.; Klabunde, K. J.; Sorensen, C. M.; Hadjapanayis, G. C. Borohydride reductions of metal ions. A new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates. Langmuir 1992, 8, 771–773.

19

Sun, J. K.; Zhang, W.; Wang, S. Y.; Ren, Y. B.; Liu, Q. Y.; Sun, Y. F.; Tang, L.; Guo, J. X.; Zhang, X. Ni-Co-B nanosheets coupled with reduced graphene oxide towards enhanced electrochemical oxygen evolution. J. Alloys Compd. 2019, 776, 511–518.

20

Yang, M. Q.; Dan, J. D.; Pennycook, S. J.; Lu, X.; Zhu, H.; Xu, Q. H.; Fan, H. J.; Ho, G. W. Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: A new hybrid 2D material for enhanced photo/electro-catalysis. Mater. Horiz. 2017, 4, 885–894.

21

Arzac, G. M.; Rojas, T. C.; Fernández, A. Boron compounds as stabilizers of a complex microstructure in a Co-B-based catalyst for NaBH4 hydrolysis. ChemCatChem 2011, 3, 1305–1313.

22

Geng, J. F.; Jefferson, D. A.; Johnson, B. F. G. The unusual nanostructure of nickel-boron catalyst. Chem. Commun. 2007, 9, 969–971.

23

Xu, N.; Cao, G. X.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A 2017, 5, 12379–12384.

24

Li, H.; Li, H. X.; Deng, J. F. The crystallization process of ultrafine Ni-B amorphous alloy. Mater. Lett. 2001, 50, 41–46.

25

Ozerova, A. M.; Bulavchenko, O. A.; Komova, O. V.; Netskina, O. V.; Zaikovskii, V. I.; Odegova, G. V.; Simagina, V. I. Cobalt boride catalysts for hydrogen storage systems based on NH3BH3 and NaBH4. Kinet. Catal. 2012, 53, 511–520.

26

Singh, V.; Srinivas, V. Evolution of Ni: B2O3 core–shell structure and magnetic properties on devitrification of amorphous NiB particles in air. J. Appl. Phys. 2009, 106, 053910.

27

Licht, S.; Yu, X. W.; Qu, D. Y. A novel alkaline redox couple: Chemistry of the Fe6+/B2− super-iron boride battery. Chem. Commun 2007, 26, 2753–2755.

28

Wang, Y. D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Exceptional electrochemical activities of amorphous Fe-B and Co-B alloy powders used as high capacity anode materials. Electrochem. Commun. 2004, 6, 780–784.

29

Yang, H. X.; Wang, Y. D.; Ai, X. P.; Cha, C. S. Metal borides: Competitive high capacity anode materials for aqueous primary batteries. Electrochem. Solid-State Lett. 2004, 7, A212–A215.

30

Chhetri, M.; Sultan, S.; Rao, C. N. R. Electrocatalytic hydrogen evolution reaction activity comparable to platinum exhibited by the Ni/Ni(OH)2/graphite electrode. Proc. Natl. Acad. Sci. USA 2017, 114, 8986–8990.

31

Hu, C. Y.; Ma, Q. Y.; Hung, S. F.; Chen, Z. N.; Ou, D. H.; Ren, B.; Chen, H. M.; Fu, G.; Zheng, N. F. In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis. Chem 2017, 3, 122–133.

32

Rao, Y.; Wang, Y.; Ning, H.; Li, P.; Wu, M. B. Hydrotalcite-like Ni(OH)2 nanosheets in situ grown on nickel foam for overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 33601–33607.

33

Peng, L. S.; Liao, M. S.; Zheng, X. Q.; Nie, Y.; Zhang, L.; Wang, M. J.; Xiang, R.; Wang, J.; Li, L.; Wei, Z. D. Accelerated alkaline hydrogen evolution on M(OH)x/M-MoPOx (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps. Chem. Sci. 2020, 11, 2487–2493.

34

Zhang, X. P.; Zhu, S. Y.; Xia, L.; Si, C. D.; Qu, F.; Qu, F. L. Ni(OH)2-Fe2P hybrid nanoarray for alkaline hydrogen evolution reaction with superior activity. Chem. Commun. 2018, 54, 1201–1204.

35

Mountjoy, G.; Corrias, A.; Gaskell, P. H. An electron energy loss spectroscopy study of Ni60B40 alloys prepared by chemical reduction and melt spinning. J. Non-Crystal. Solids 1995, 193, 616–619.

36

Al Samarai, M.; Hahn, A. W.; Askari, A. B.; Cui, Y. T.; Yamazoe, K.; Miyawaki, J.; Harada, Y.; Rüdiger, O.; DeBeer, S. Elucidation of structure–activity correlations in a nickel manganese oxide oxygen evolution reaction catalyst by operando Ni L-edge X-ray absorption spectroscopy and 2p3d resonant inelastic X-ray scattering. ACS Appl. Mater. Interfaces. 2019, 11, 38595–38605.

37

Liu, H. S.; Bugnet, M.; Tessaro, M. Z.; Harris, K. J.; Dunham, M. J. R.; Jiang, M.; Goward, G. R.; Botton, G. A. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. Phys. Chem. Chem. Phys. 2016, 18, 29064–29075.

38

Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; de Arquer, F. P. G.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149–154.

39

Azor, A.; Ruiz-Gonzalez, M. L.; Gonell, F.; Laberty-Robert, C.; Parras, M.; Sanchez, C.; Portehault, D.; González-Calbet, J. M. Nickel-doped sodium cobaltite 2D nanomaterials: Synthesis and electrocatalytic properties. Chem. Mater. 2018, 30, 4986–4994.

40

Hirayama, K.; Ii, S.; Tsurekawa, S. Transmission electron microscopy/electron energy loss spectroscopy measurements and ab initio calculation of local magnetic moments at nickel grain boundaries. Sci. Technol. Adv. Mater. 2014, 15, 015005.

41

Pearson, D. H.; Ahn, C. C.; Fultz, B. White lines and d-electron occupancies for the 3d and 4d transition metals. Phys. Rev. B 1993, 47, 8471–8478.

42

Yang, W. G. The measured change in d-electron of Ni in Ni-7.2 at.%Ti alloy studied by electron energy loss spectroscopy. Adv. Mater. Res 2014, 887–888, 370–373.

43

Ai, X.; Zou, X.; Chen, H.; Su, Y. T.; Feng, X. L.; Li, Q. J.; Liu, Y. P.; Zhang, Y.; Zou, X. X. Transition-metal–boron intermetallics with strong interatomic d–sp orbital hybridization for high-performance electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 3961–3965.

44

Ge, Y. C.; Gao, S. P.; Dong, P.; Baines, R.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Insight into the hydrogen evolution reaction of nickel dichalcogenide nanosheets: Activities related to non-metal ligands. Nanoscale 2017, 9, 5538–5544.

45

Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.

46

Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703–12706.

47

Zeng, M.; Wang, H.; Zhao, C.; Wei, J. K.; Qi, K.; Wang, W. L.; Bai, X. D. Nanostructured amorphous nickel boride for high-efficiency electrocatalytic hydrogen evolution over a broad pH range. ChemCatChem 2016, 8, 708–712.

48

Cao, X. Y.; Wang, X. X.; Cui, L.; Jiang, D. G.; Zheng, Y. W.; Liu, J. Q. Strongly coupled nickel boride/graphene hybrid as a novel electrode material for supercapacitors. Chem. Eng. J. 2017, 327, 1085–1092.

49

Chen, X. C.; Yu, Z. X.; Wei, L.; Zhou, Z.; Zhai, S. L.; Chen, J. S.; Wang, Y. Q.; Huang, Q. W.; Karahan, H. E.; Liao, X. Z. et al. Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2019, 7, 764–774.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 June 2021
Revised: 28 July 2021
Accepted: 29 July 2021
Published: 01 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

Z. H. acknowledges support under the Australian Research Council’s Future Fellowship (No. FT190100658). This work is partially supported by the Australian Research Council (ARC) through a Discovery project (No. DP180101453). W. L. is grateful for the support from a Discovery Early Career Researcher Award via DE180101478.

Return